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a b s t r a c t

Motivation: Identification of disease-resistant genes in the rice is a tough work in various experimental
studies. Xanthomonas oryzae pv. oryzae (Xoo) which causes bacterial blight are considered to be the most
devastating diseases in most rice-growing regions. However, currently there is no existing method for the
prediction of disease-resistant genes from sequence data. Accurate prediction of Xoo from protein
sequences is illuminating for gene finding projects.
Results: We propose a novel machine-learning approach based on the method of support vector machine
(SVM) and chaos game representation (CGR), to assess the chance of a protein in rice to be Xoo resistant.
We choose 13 already cloned genes for positive data and 48 selective gene in rice for negative data, the
average accuracy achieves 100% in resubstitution test, 95.08% in jackknife test, and the Matthews corre-
lation coefficient achieves 0.8509. The successful application of SVM + CGR approach in this study sug-
gests that it should be more useful in quantifying the protein sequence–structure relationship and
predicting the structural property profiles from protein sequences.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Rice is the main food for plenty of people in the world. Although
the third time of increasing rice harvest is initiated for decade with
the goal of ‘‘super rice” or ‘‘super hybrid rice”, still a number of
challenges have to be met to achieve the goal of increasing rice
production in a sustainable manner. The biggest challenge is the
increasing occurrence of diseases in almost all of the rice-produc-
ing areas causing great yield loss (Zhang, 2007a).

It becomes an accepted fact that the best idea to resolve the
problem is rapid development of Green Super Rice (GSR) which re-
quires a gradual reduction in application of pesticides, fertilizers,
and water while still achieving continuous yield increase and qual-
ity improvement, of course including adequate resistances to ma-
jor diseases and insects. Therefore, identification of Genes for
Disease Resistance is one of most important step in GSR (Zhang,
2007b).

Xanthomonas oryzae pv. oryzae (Xoo) which causes bacterial
blight second only to the Pyricularia grisea which causes rice blast
are considered to be the most devastating diseases in most rice-
growing regions. Now six gene Xa1, xa5, xa13, Xa21, Xa3/Xa26,
and Xa27 have been reported to be isolated for bacterial blight
resistance (Gu et al., 2005; Iyer & McCouch, 2004; Ponciano, Yoshik-
ll rights reserved.
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awa, Lee, Ronald, & Whalen, 2006; Ronald & Song, 2006; Song et al.,
1995; Sun, Yang, Wang, & Zhang, 2003; Yoshimura et al., 1998). The
Xa21 gene is the first-cloned bacterial blight-resistant gene which
encodes a leucine-rich repeat (LRR) receptor-like protein kinase
and the research suggestive of a role in cell surface recognition of
a pathogen ligand and subsequent activation of an intracellular ki-
nase leading to a defence response (Song et al., 1995). Along with
xa21, some other genes are cloned, e.g., Xa26, which also encodes
a LRR receptor kinase-like protein (Sun et al., 2004). Meanwhile,
Xa1 is induced by pathogen infection and wound which encodes a
cytoplasmic receptor-like protein with NBS domain and nucleo-
tide-binding LRR domain (Yoshimura et al., 1998). The recessive
gene xa5 is a general eukaryotic transcription factor which encodes
the gamma subunit of transcription factor IIA (TFIIAc) (Iyer &
McCouch, 2004). The fully recessive gene xa13 encodes a novel
plasma membrane protein that plays a key role in both disease
resistance and pollen development (Chu et al., 2006). Xa27 induc-
tion will occur only in the immediate vicinity of infected tissue
which encodes identical proteins to avrXa27 whose product is a nu-
clear localized type-III effector (Gu et al., 2005).

Meanwhile, some other genes are finding out to be connected
with Xa21 gene. XB3 is an E3 ubiquitin ligase, as a substrate for
the XA21 Ser and Thr kinase will bind to XA21. XB3 contains an
ankyrin repeat domain and a RING finger motif, the research
indicate that Xb3 is necessary for full accumulation of the
XA21 protein and for Xa21-mediated resistance (Ronald & Song,
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2006). OsPRI genes PR1a, PR1b and PR1c were cloned that at the
juvenile and adult stages will induce a resistance response to a
wildtype Xoo strain when the Xa21 locus exists (Ponciano
et al., 2006).

By the literatures mentioned earlier, we note that in usual way,
one used to find disease-resistant gene by experimental methods,
which is a trial and error procedure. With the finish of the whole
genome sequencing of the rice, sequence-based prediction using
bioinformatic method sheds light on the gene recognition research
field.

A support vector machine (SVM) is an effective tool for classifi-
cation and prediction, which has been used in various fields related
to protein function prediction, such as prediction of thermal pro-
tein (Hu et al., 2009) and soluble protein (Susan, Abhijit, Bhaskar,
Valadi, & Petety, 2006). However, it is still a fresh idea for Xoo
prediction.

During our research, an SVM method is used in order to accel-
erate finding the Xoo disease-resistant genes and make some pre-
diction to the fine-mapped genes. A key issue in manipulating
SVM is what mathematical features can one extract from the data
itself, since different features chosen might lead to a big difference
in the accuracy of prediction.

It is widely accepted that the functions of proteins are affected
by their structure. In common, during the research in protein func-
tion prediction, residue composition, dipeptide composition and
tripeptide composition play important role in feature extraction
during protein function prediction and have got some successes.
Unfortunately, these methods cannot generate a good visual repre-
sentation (Hao, Lee, & Zhang, 2000). Jeffrey (1990) proposed the
chaos game representation (CGR) of DNA sequences, which per-
forms the pattern hiding in sequences. In fact, CGR is an iterative
mapping technique that processes a given sequence into a picture
(see Section 2) with fractal structure, visually revealing previously
unknown structure.

Furthermore, the CGR of DNA sequences has been extended to
represent protein sequences and to study protein structure (Basu,
Pan, Dutta, & Das, 1997; Fiser, Tusnady, & Simon, 1994; Yu, Anh,
& Lau, 2004). In order to discriminate patterns of protein sequences
belonging to different functional classes, Basu et al. (1997) used
CGR algorithm to generate protein sequence using a 12-sided reg-
ular polygon with each vertex representing a group of amino acid
residues leading to conservative substitutions. The authors claim
that CGR has the potential to reveal the evolutionary and func-
tional relationships even between the proteins having no signifi-
cant sequence homology, which is the fundamental character of
sequence alignment.

In this paper, we present a novel prediction technique that
combined the method of SVM and CGR, to assess the chance of a
protein in rice to be Xoo resistant. The average accuracy achieves
100% in resubstitution test and 95.08% in jackknife test.
Table 1
List of Xoo-resistant gene in rice.

Gi number Description

1 117655416 Indica pathoge
2 117655418 Indica pathoge
3 117655420 Indica pathoge
4 2943741 Oryza sativa m
5 55585038 Indica transcri
6 89892339 Indica cultivar
7 89892335 Indica cultivar
8 94481122 Indica group X
9 14279687 Receptor-like
10 90018760 Indica bacteria
11 66735941 Indica xa27-IR
12 66735943 Indica Xa27-IR
13 68248527 Japonica XB3-
2. Materials and methods

2.1. Data set

The proteins for the analysis are chosen based on literature (Chu
& Wang, 2007; Gu, Sangha, Li, & Yin, 2008; Sun et al., 2003; Wu, Li,
Xu, & Wang, 2008; Zhang, 2007a) reports on the Xanthomonas
resistance, and the sequences are collected from NCBI (http://
www.ncbi.nlm.nih.gov/) using the key words (gene names) men-
tioned in the above-mentioned papers.

All we get from the NCBI comprised 48 proteins (Wu et al.,
2008) including a few alleles and partial CDS. In order to reduce
the redundancy, the homologues with more than 95% similarity
are eliminated by CD-HIT (Li, Jaroszewski, & Godzik, 2002). By this
way, thirteen proteins left, which are listed in Table 1. These pro-
teins are all proved resistance to the Xoo directly or indirectly.

The negative data are randomly chosen from the protein data
set download from KOME (ftp://cdna01.dna.affrc.go.jp/pub/data/
20081001/INE_FULL_SEQUENCE_AMINO_DB.zip) by the standard
that does not belong to the 48 positive data and the protein is long-
er than 100aa. Even though a huge number of proteins are in this
data set and obviously have no evidence that they are Xoo-resistant
gene, we just choose 48 out of it so as to keep the balance of posi-
tive and negative data set size.

2.2. SVM

A support vector machine (SVM) is a set of related supervised
learning methods used for classification and regression. Viewing
input data as two sets of vectors in an n-dimensional space, an
SVM will construct a separating hyperplane in that space, one
which maximizes the margin between the two data sets. To calcu-
late the margin, two parallel hyperplanes are constructed, one on
each side of the separating hyperplane, which are ‘‘pushed up
against” the two data sets. Intuitively, a good separation is
achieved by the hyperplane that has the largest distance to the
neighboring data points of both classes, since in general the larger
the margin the better the generalization error of the classifier.

Suppose we are given a set of samples, i.e. a series of input d-tu-
ple vectors Xi e Rd (i = 1, 2, . . . , N), with corresponding labels
yi e {�1, +1} (i = 1, 2, . . . , N), where +1 and �1 are used to stand,
respectively, for the positive set and negative set. The goal here
is to construct a classifier and derive one decision function from
the available samples, which has small probability of misclassify-
ing a future sample.

SVM performs a nonlinear mapping of the input vector X from
the input space Rd into a higher dimensional Hilbert space, where
the mapping is determined by the kernel function

Kðxi; xjÞ ¼ expð�ckxi � xjk2Þ:
nesis-related protein PR1a(Pr1a) mRNA
nesis-related protein PR1b(Pr1b) mRNA
nesis-related protein PR1c(Pr1c) mRNA
RNA for XA1 (Yoshimura et al., 1998)

ption factor IIA gamma subunit (TFIIAy) mRNA (Iyer & McCouch, 2004)
IR24 disease-resistant allele XA13 (Xa13) gene (Chu et al., 2006)
IRBB13 disease-resistant allele XA13 (Xa13) gene (Chu et al., 2006)
a21 gene for receptor kinase-like protein: II you 8220

kinase Xa21-binding protein 3 (Xb3) mRNA
l blight-resistance protein XA26 (Xa26) gene (Xiang, Cao, Xu, Li, & Wang, 2006)
24 allele (Gu et al., 2005)
BB27 allele (Gu et al., 2005)

related protein (XBOS36) mRNA

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/


Fig. 1. Generation of vectors in the CGR of proteins.
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The function is called the RBF (radial basis function) kernel with one
parameter c. Finally, for the selected kernel function, the learning
task amounts to solving the following convex quadratic program-
ming (QP) problem,

max
XN

i¼1

ai �
1
2

XN

i¼1

XN

j¼1

aiajyiyjKðxi; xjÞ;

subject to

0 � a � C;
XN

i¼1

aiyi ¼ 0;

where the form of the decision function is f ðxÞ ¼ sgn
ð
PN

i¼1aiyiKðxi; xjÞ þ bÞ.
For a given data set, only the kernel function and the regularity

parameter C must be selected. A complete description to the theory
of SVMs for pattern recognition is found in Vapnik (1998).

2.3. Features used in SVM training

The features used in this paper are residue compositions, dipep-
tide compositions and CGR features.

2.3.1. Residue and dipeptide composition
It is known that the protein sequence is formed by 20 different

kinds of amino acids, so we can extract the residue composition as
the desired information directly from protein sequence. Thus, we
get 20 mathematical features by this means.

On the other hand, for a protein that contained n amino acids
P1, P2, . . . , Pn, it contained n � 1 dipeptides, such as P1P2, P2

P3, . . . , Pn�1Pn. The composition of a dipeptide was defined as:

compostionðiÞ ¼ dipeptideðiÞ=n� 1;

where i denotes the 400 dipeptides, dipeptide(i) denotes the number
of the ith dipeptide.

A native idea is taking tripeptide for future considerable feature,
but unfortunately this feature seldom makes sense. The possible
reason for this is that many tripeptides are not represented at all,
owing to the small length of the proteins.

2.3.2. CGR algorithm and CGR features
In order to generate visually identifiable distinct patterns of

protein sequence, Basu et al. (1997) classified 20 kinds of amino
acids to 12 different groups according to their different function
(Dayhoff, 1978). The reduced groups are listed below:

[Isoleucine(I), Leucine(L), Valine(V), methionine(M)], [Argi-
nine(R), Lysine(K)], [Aspatic acid(D), Glutamic acid(E)], [Aspara-
gine(N)], [Glutamine(Q)], [Histidine(H)], [Serine(S), Threonine(T)],
[Proline(P)], [Alanine(A), Glycine(G)], [Cysteine(C)], [Phenylala-
nine(F), Tyrosine(Y)], [Tryptophan(W)].

Each group represents a vertex of 12-vertex polygon. Further-
more, Basu et al. claim that the following 12-vertex CGR algorithm
is optimum for generation of distinct patterns for different protein
families:

Step 1. Draw a 12-sided regular polygon, and each vertex repre-
sents a kind group of amino acids;

Step 2. Set the center point as the initial point;
Step 3. Given a protein sequence with length N, we draw N points

in the polygon by the following way: in turn we read
alphabet from the protein sequence, since each read
belongs to one group of amino acids, then we determine
a certain vertex of polygon and we draw the midpoint
of initial point and the chosen vertex. After finishing draw
one point, we set it to be the new initial point, and we can
draw N points with such iteration. The procedure is illus-
trated in Fig. 1. More precisely, if we let P1(x1, y1), . . . ,
P12(x12, y12) be the coordinates of 12 vertex of the poly-
gon, then we can get coordinates of every points in CGR
by the following formula:
CGRiðxÞ ¼ ðCGRi�1ðxÞ þ PjðxjÞÞ=2;
CGRiðyÞ ¼ ðCGRi�1ðyÞ þ PjðyjÞÞ=2;

i ¼ 1;2; . . . ;N; j ¼ 1;2; . . . ;12;

where CGRi(x, y) means the coordinate of the ith point
drawn in CGR, and Pj(xj, yj) represents the coordinate of
chosen vertex by the jth read (each read determines a cer-
tain vertex of polygon).
Step 4. The 12-sided polygon is divided into 24 segments (grids)
as shown in Fig. 1, and the segments are labeled serially
with numbers 1–24 (not shown in Fig. 1). For each seg-
ment, namely, Sk, we count the number of points fall in
it, and denote as Lk. (The points falling on boundaries
should be counted in any one of the neighboring seg-
ments.) Then set
Gk ¼ Lk=N; k ¼ 1;2; . . . ;24;

where N is the length of the protein sequence.
From the above 12-vertex CGR algorithm, we find that each pro-
tein sequence will induce a 24-tuple vector (G1, G2, . . . , G24). We
put the first protein in Table 1 as an example, where sequence is
as below:

>GI number: 117655416
MASSSSRLSCCLLVLAAAAMAATAQNSAQDFVDPH
NAARADVGVGPVSWDDTVAAYAESYAAQRQGDCK
LEHSDSGGKYGENIFWGSAGGDWTAASAVSAWVSE
KQWYDHGSNSCSAPEGSSCGHYTQVVWRDSTAIGC
ARVVCDGDLGVFITCNYSPPGNFVGQSPY

and the vector got from the CGR of the protein is (G1, G2,

. . . , G24) = (0.0118, 0, 0.00592, 0.071, 0.0533, 0.00592, 0, 0.0355,
0.118, 0.107, 0.0178, 0, 0, 0.142, 0.118, 0.0828, 0.0296, 0, 0.0355,
0.0947, 0.0592, 0, 0.0118, 0).
3. Results

SVM classifiers are applied to discriminate between Xoo-resis-
tant or non-resistant proteins. Usually, a predictive method is eval-
uated by two different approaches, the resubstitution test and the
jackknife test.

By the test of resubstitution, the structural class of each protein
in a training data set is predicted using the rules derived from the
same set. Although this test gives somewhat optimistic error esti-



Fig. 2. ROC and ROCCH curve for SVM classifier (with 420 features).

Fig. 3. ROC and ROCCH curve for SVM classifier (with 24 features).
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mate because the same proteins are used to derive the prediction
rules and to predict themselves, the resubstitution test is abso-
lutely necessary due to its ability to reflect the self-consistency
of a given method.

On the other hand, a cross-validation test for an independent
testing data set is also needed because it can reflect the extrapolat-
ing effectiveness of a predictive method. Jackknife test is thought
to be the most reliable one among cross-validation tests, and it is
also called the test of leave-one-out. Moreover, in the jackknife
test, each protein is singled out as an independent sample and used
to examine the predictive method.

To start with, the SVM classifier is trained with 420 features
comprising 20 residues and 400 dipeptides. In the resubstitution
test, the prediction accuracy achieves 100%, it shows the self-con-
sistency as one expects. While in the jackknife test, the test accu-
racy of the prediction is 93.44%, where c = 50, C = 90.

Secondly, SVM classifier is trained with 24 features got from
CGR. It also amazingly achieves 100% in resubstitution test. In
the jackknife test, the smaller size of features slightly decrease
the prediction accuracy to 88.52%, where c = 300, C = 400.

Finally, we combine the above 444 features altogether in SVM
classifier, and the accuracy in resubstitution remains 100%.
While in the jackknife test, the classifier makes out 7 true data
out of 13 positive data and recognizes all of 48 true negative
data. Therefore, the accuracy achieves 95.08%, where c = 50,
C = 90.

Alternatively, we delete 400 dipeptide composition from above
444 features, so 44 features remain including residue composition
and CGR features. Amazingly, with parameters chosen as c = 90,
C = 10, the classifier not only performs quick, but also achieve the
same performance as the above-mentioned one.

The experimental result is shown in Table 2, where the Mat-
thews Correlation Coefficient (MCC) is used in machine learning
as a measure of the quality of binary classifications. It performs
well even if the classes are of very different sizes. A returning value
of +1 represents a perfect prediction, 0 an average random predic-
tion and �1 an inverse prediction.

Another performance comparison between three kinds of dif-
ferent experiments results with 24, 420, and 444 features in
classifiers are listed in Figs. 2–4. Here, ROC is a graphical plot
of the sensitivity vs. (1-specificity) for a binary classifier system
by varying its discrimination threshold value, and ROC value de-
note the area under ROC (Receive Operating Characteristic)
curve. The bigger ROC value represents the higher accuracy of
the classifier.

Meanwhile, ROCCH value denotes the area under convex hull of
ROC curve which is also useful for the evaluation of machine-learn-
ing techniques.

The ROC and ROCCH value in Figs. 2–4 indicate that three SVM
classifier developed in this paper are reasonable. Moreover, classi-
Table 2
Prediction result of jackknife test via SVM.

Feature Sensitivitya (%) Specificityb (%) Accuracyc (%) MCCd

420 90.91 76.92 93.44 0.7972
24 75 69.23 88.52 0.6488
444/44 100 76.92 95.08 0.8509

a Sensitivity is defined as TP/(TP + FP), where TP and FP are the numbers of cor-
rectly and incorrectly classified positive data, respectively.

b Specificity is defined as TP/(TP + FN), where FN is the number of incorrectly
classified negative data, which provides a high enough specificity that its predic-
tions can be experimentally verified at a reasonable cost.

c Prediction accuracy = (TP + TN)/n, where TN is the number of correctly classified
negative data and n is the size of the data sets.

d MCC equals to ðTP� TN� FP� FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FNÞ

p
.
 Fig. 4. ROC and ROCCH curve for SVM classifier (with 444 or 44 features).



Fig. 5. Xoo-resistant gene sequence.

Fig. 6. Non-resistant gene sequence.
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fier with 44 features is the most efficient and reliable one among
them.

4. Conclusion

In comparison with above-mentioned previous works, we can
conclude that our CGR + SVM method have some advantages:

(1) Combining residue, dipeptide and CGR as the whole features
in SVM classifier is a new idea.

(2) The dimension of data set is considerable. Especially, one can
note that CGR plays an important role among them. As we
know, the small dimension of data set naturally leads to
fewer store space and faster operation speed.

(3) Instead of the amino acid composition used widely in the
previous structural class prediction work, the chaos games’
figures are used for the structural class prediction. The CGR
algorithm can generate a picture of every protein sequence,
which can provide visual help.

Taking two pictures for visual example, we draw two CGR map
in Figs. 5 and 6. Picture in Fig. 5 is CGR map drawn from a long pro-
tein sequence assembled by several Xoo-resistant genes, and pic-
ture in Fig. 6 is related to non-resistant gene. Visual comparison
shows that they do have some difference in dots’ position, density
and clustering trend.

We expect that applying our SVM-CGR-based classification ap-
proach helps to obtain high recognition rates for the detection of
Xoo-resistant genes.
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