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Abstract Expression levels measured in microarrays of

oligonucleotide probes have now been adapted as a high

throughput approach for identifying DNA sequence varia-

tion between genotypes, referred to as single feature

polymorphisms (SFPs). Although there have been

increasing interests in this approach, there is still need for

improving the algorithm in order to achieve high sensitivity

and specificity especially with complex genome and large

datasets, while maintaining optimal computational perfor-

mance. We obtained microarray datasets for expression

profiles of two rice cultivars and adapted a median polish

method to detect SFPs. The analysis identified 6,655 SFPs

between two the rice varieties representing 3,131 rice

unique genes. We showed that the median polish method

has the advantage of avoiding fitting complex linear

models thus can be used to analyze complex transcriptome

datasets like the ones in this study. The method is also

superior in sensitivity, accuracy and computing time

requirement compared with two previously used methods.

A comparison with data from a resequencing project

indicated that 75.6% of the SFPs had SNP supports in the

probe regions. Further comparison revealed that SNPs in

sequences immediately flanking the probes also had con-

tributions to the detection of SFPs in cases where the

probes and the targets had perfectly matched sequences. It

was shown that differences in minimum free energies

caused by flanking SNPs, which may change the stability

of RNA secondary structure, may partly explain the SFPs

as detected. These SFPs may facilitate gene discovery in

future studies.

Introduction

Short DNA oligonucleotides are commonly used as probes

to interrogate nucleic acid targets in microarray analyses.

These oligonucleotide probes, as short as 25 bases, are used

in one of the most widely used microarray technology,

Affymetrix GeneChip microarray. The short probes are

generally more sensitive to mismatch bases to the targets

during molecular hybridization comparing to probes with

longer sequences. It is known that a mismatch base within

the probe sequence could reduce the binding affinity

between targets and probes (Borevitz et al. 2003, 2007;

Ronald et al. 2005; Zhu and Salmeron 2007).

The feature about the high sensitivity to sequence

variations of the short oligonucleotide probes has two

implications in the microarray analysis: (1) in order to

accurately measure transcript abundance, perfect match is

essential between probes and targets and between targets

from different samples within the probe; (2) if target

abundance is presumed to be at similar level in different

samples, difference in hybridization signals measured by

the same probe sequence could be used to infer sequence

mismatch between targets from different samples. The

latter has been developed into an approach to quickly

identify genetic variations, referred to as single feature

polymorphisms (SFPs), by genomic DNA hybridization
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with microarrays in a number of species, including yeast,

Arabidopsis and rice (Borevitz et al. 2003; Kumar et al.

2007; Winzeler et al. 1998). SFPs have also been detected

in genomes with larger size and higher complexity from

labeled RNA transcript derivatives (Cui et al. 2005; Das

et al. 2008; Luo et al. 2007; Rostoks et al. 2005). Since

oligonucleotide microarrays are composed of millions of

probes representing most of the expressed unique sequen-

ces in the genome, SFPs can capture large number of

sequence variations. Thus chip-based SFP detection can

serve as high-throughput platforms for genetic analyses,

providing thousands of markers in a single experiment (Das

et al. 2008; Ronald et al. 2005), which is much more

efficient than other molecular markers such as RFLPs and

SSRs that have been widely used in genetic analyses. SFP

markers have been used for high-resolution genetic map-

ping (West et al. 2006), and for studying expression

quantitative trait loci (eQTLs) (Luo et al. 2007; Potokina

et al. 2008; West et al. 2006, 2007).

SFPs have been generally regarded as resulting from

mismatched bases between the targets and probes. How-

ever, results from previous studies indicated that SFPs can

also be repeatedly detected even though the targets and

the probes have perfectly matched sequences (Borevitz

et al. 2007; Luo et al. 2007; Zhu and Salmeron 2007).

Such results have frequently been ignored in the analyses,

thus the cause has not been investigated. A possible cause

for the SFPs resulting from perfectly matched probe-tar-

get sequences might be the influence of polymorphisms,

mostly SNPs, between the targets in the sequences

flanking the probes (probe flanking SNPs or flanking

SNPs).

A highly efficient algorithm is critical for sensitivity

and specificity of SFP detection, while maintaining

optimal computational performance, especially with

complex genome and large data sets. Several algorithms

have been developed to detect SFPs from RNA derived

microarray data (Cui et al. 2005; Luo et al. 2007; Ronald

et al. 2005; Rostoks et al. 2005). These algorithms have

to reduce the perturbation of hybridization signals

resulting from different transcript abundance rather than

from genetic variations to ensure sufficient detection

power and accuracy. For example, Rostoks et al. pro-

vided a mean-based analysis of variance (ANOVA)

method employing a complex linear model for the spe-

cific experimental designs, which successfully discrimi-

nated the differential hybridization signals inducted by

different tissues and genotypes (Rostoks et al. 2005).

Ronald et al. inferred SFPs by comparing the observed

hybridization signal with the expected using the posi-

tional-dependent nearest-neighbour (PDNN) model which

needs to estimate 82 energy parameters for specific and

nonspecific RNA–DNA binding relying on information of

probe sequences (Luo et al. 2007; Ronald et al. 2005).

Since these algorithms involved estimation of multiple

parameters and were developed for and validated using

data from a single organism under study, the efficiency

and generality should be evaluated using multiple species

with different genome and tissue complexity.

Median polish is a median-based data analysis technique

which is considered to be more robust than ANOVA

(Seheult and Tukey 2001), thus may provide an alternative

approach to dissecting the hybridization signal into tran-

script abundance and genetic variation. This method has

the advantage of avoiding fitting complex linear models

thus can be used to analyze the complex transcriptome data

sets. In this study, we analyzed SFPs between two rice

cultivars based on a microarray datasets for expression

profiles using the median polish method. We showed that,

in addition to simplicity, this method also has better

detection sensitivity and accuracy than two previously used

methods. We identified 6,655 SFPs between two rice

varieties representing 3,131 rice unique genes. A compar-

ison with data from a resequencing project indicated that

75.6% of the SFPs had SNPs in the probe regions. We also

showed that SNPs in sequences flanking the probes also

had contributions to the detection of SFPs in cases where

the probes and the target sequences had perfect matches,

demonstrating the importance of the probe flanking SNPs

in comparative transcriptome analyses using oligonucleo-

tide microarrays.

Materials and methods

Plant materials, RNA isolation and microarray

hybridizations

Two rice varieties of indica subspecies, Minghui 63 and

Zhenshan 97, were used in this study. The seeds were

planted and seedlings transplanted in the Experimental

Farm of Huazhong Agricultural University, Wuhan, China

at three time points to form three biological repeats. Panicle

samples were collected at three developmental stages:

secondary branch primordium differentiation (SBP), pistil/

stamen primordium differentiation (PSP), and pollen-

mother cell formation (PCF). The details of the develop-

mental stages and sampling were as described previously

(Huang et al. 2006). Approximately, 100 mg of sample

tissues was collected under a dissecting microscope at

8:00 am–9:30 am, put into a 1.5-ml-microfuge tube with

1.0 ml TRIZOL (Qiagen), and quickly stored in liquid

nitrogen. RNA isolation, labeling, and microarray hybrid-

ization were performed by the GeneTech Biotechnology

Limited Company (Shanghai, China) according to

Affymetrix standard protocols. Six replicates of labeled
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RNA targets, representing three biological replicates and

two technical replicates, were hybridized to the Rice

GeneChip Genome Array (http://www.affymetrix.com/

products/arrays/specific/rice.affx). This array contains

57,381 probe sets representing 51,279 transcripts from

japonica and indica. Each probe set consists of 11 pairs of

25-mer perfect match (PM) and mismatch (MM) probes

which differ only at the middle base.

Additional microarray data

In addition to the rice microarray data generated from this

study, microarray data used for yeast allelic specific

expression analysis (Ronald et al. 2005) and for barley SFP

detection (Rostoks et al. 2005) were also used for the

analysis. Yeast data generated by Affymetrix YGS98

GeneChip array were downloaded from NCBI Gene

Expression Omnibus (GEO) (acc: GSE1975) (Barrett et al.

2007) and barley data generated by Affymetrix Barley1

GeneChip array can be downloaded from author’s website

(http://naturalsystems.uchicago.edu/naturalvariation/barley/).

Data processing and SFP detection

The CEL files containing raw intensity data for each probe

were read into a R program (Ihaka and Gentleman 1996).

Background correction and quantile normalization were

performed using RMA methods in Bioconductor affy

package (Gautier et al. 2004; Gentleman et al. 2004). The

gene expression presence/absence detection (absolute call)

was calculated from the CEL files using the Microarray

Analysis Suite (MAS 5.0, Affymetrix). Only probes from

probe sets with ‘‘Present’’ value in the absolute calls in at

least four out of total six arrays of each sample were

selected for further analysis. Matrices containing the

background corrected and normalized data with ‘‘Present’’

calls by combining the information from the above pro-

cessing procedures were subjected to median polish anal-

ysis to extract the residuals. The limma package (Smyth

2004) was then used to determine SFPs by a selected

threshold based on Benjamini and Hochberg (BH)

adjusted P values. The custom script and microarray data

can be downloaded in our website (http://www.ncpgr.cn/

supplements/sfp/).

The method of fitting linear model proposed by Rostoks

et al. (2005) was also used for comparing the efficiency of

SFP detection. Probes in a set were fit with the following

linear model for rice and barley data:

log Ytgrp

� �
¼ lþ t þ gþ g� t þ pþ e

where Y is the background corrected normalized intensity

of t (tissue), g (genotype), r (replicate), and p (probe) in a

probe set; l the mean probe intensity. For yeast data set,

ploidy (haploid or diploid) was treated as the tissue com-

ponent in the plant data set. The residuals which embodied

the genotype 9 probe effects were thus extracted to iden-

tify SFPs. The scripts and data of this method can be

downloaded from authors’ web site (see ‘‘Additional

microarray data’’).

Rice probe sequence mapping

Sequences of 631,066 PM probes on the rice genome array

downloaded from Affymetrix website were aligned against

the pseudo-chromosomes of TIGR rice annotation version

5.0 using BLAT (Kent 2002) with parameters of min-

Identity = 100, minMatch = 1 and stepSize = 5. Only

probes with unique location to the rice genome were used

to SFP confirmation and SNP analysis.

Rice and yeast SFP confirmation by SNP analysis

in silico

Among 257,691 SNPs in OryzaSNP project (http://www.

oryzasnp.org/), a total of 37,730 high-quality SNPs

between Zhenshan 97 and Minhui63 were mapped to rice

PM probes based on sequence identity and chromosomal

location. The corresponding SNPs to SFP probes were

identified as true detection positives. In addition, 100 Mb

pseudo-sequences were downloaded from the same source

and used to identify probes that are monomorphic between

the two varieties.

To validate yeast SFPs, the whole genome shotgun

sequences of Saccharomyces cerevisiae RM11-1a (RM)

were downloaded from NCBI Nucleotide database by

searching ‘‘txid285006[Organism:noexp]’’. Probe sequence

alignments and polymorphisms were obtained by

BLASTing (Altschul et al. 1990) the YG-S98 exemplar

sequences from Affymetrix against the RM sequences

using a custom perl script.

Calculation of minimum free energy of cRNA

The 75-bp reverse complementary sequences of BY and

RM centered by each probe were extracted as cRNA

sequences. UNAfold packages (Markham and Zuker

2005; Walter et al. 1994) were downloaded from author’s

website (http://dinamelt.bioinfo.rpi.edu/). The minimum

RNA free energies of each extracted sequences were then

calculated using ‘hybrid-ss-min’ command in UNAfold

packages with parameters ‘-E -n RNA -t 45 -T 45’ and

the differences of free energies between the two geno-

types were compared.
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Results

SFP detection using median polish using rice data

Transcriptome profiling data of two indica rice cultivars

Zhenshan 97 and Minghui 63 were collected from panicles

at three developmental stages using the rice GeneChip

genome array. The median polish method, adapted from

Tukey (1977), was used in SFP detection. Thirty-six CEL

files representing two genotypes, three developmental

stages, and six replicates (three biological replicates, each

with two technical replicates) were subjected to the median

polish analysis. Only probe sets producing detectable

hybridization signal, as indicated by ‘‘Present’’ calls by

MAS 5.0 (Affymetrix Inc 2001), in at least one develop-

mental stage of both rice cultivars were selected to con-

struct data matrices. A total of 20,220 matrices each

representing a positive probe set were constructed using

signal intensities of perfect match (PM) probes after

background correction and quantile normalization. probe

set with more or less than 11 probes were removed from

the analysis. The residuals from applying median polish

were grouped by genotypes, and significant differential

residual groups were identified using limma package

(Smyth 2004) in the Bioconductor (Gentleman et al. 2004).

The custom R scripts and microarray data can be down-

loaded in our website (see ‘‘Materials and methods’’).

Based on the assumption that the observed signal

intensity of a PM probe can be decomposed to the corre-

sponding transcript abundance level and a coefficient rep-

resenting the binding affinity of the probe to the transcript

target with a random error, the following model, proposed

previously with demonstrated utility (Cui et al. 2005; Li

and Hung Wong 2001), was adopted for our data analysis:

Sgij ¼ Igi þ Agij þ egij ð1Þ

where Sgij is the log-scaled observed signal intensity of the

jth PM probe in the ith probe set hybridized to RNA

derived from the gth genotype, Igi represents the expression

index of the transcript, Agij the binding affinity coefficient

of the probe, and egij the random error. Different samples

from the same genotype are considered to have the same

Agij but may differ in Igi, whereas samples from different

genotypes especially ones having sequence polymorphisms

within the probe sequence would have different Agij thus

causing a SFP. For a N 9 M matrix composed of N

samples and M probes within the ith probe set, median

polish (Tukey 1977) decomposes each probe signal in the

matrix to the following components:

Sgij ¼ Ti þ Rgi þ Cj þ Egij ð2Þ

where Ti represents the overall value of the matrix, Rgi the

effect of each row, Cj the effect of each column and Egij the

residuals. The relation of Eqs. 1 and 2 can be expressed as

the following:

Îgi ¼ Ti þ Rgi

Âgij ¼ Cj þ Egij

�
ð3Þ

That means Igi can be estimated by the overall value Ti plus

row effect of median polished Rgi. Agij is directly

proportional to the residual of median polished Egij. For a

probe hybridizing to two different genotypes, we expect to

obtain two groups of residuals (E1ij, E2ij) due to different

affinity effects (A1ij, A2ij). Therefore, we can deduce SFPs

by applying median polish to the signal intensity matrix to

get residuals and detecting the probes with differential

residuals among different genotypes:

DAij ¼ Â2ij � Â1ij ¼ E2ij � E1ij ð4Þ

Based on the above assumptions, we can extract the

residual effects resulting from the different hybridization

affinities of the two genotypes, irrespective of the expres-

sion levels and tissues.

In calculating the residuals for a N 9 M matrix com-

posed of N samples (genotypes, tissues and replications)

and M probes, the normalized intensity values in each row

were subtracted by the median of the respective row, which

eliminates the effects of the expression levels. The resid-

uals in each column of the resulting matrix were then

subtracted by the median of the column resulting in a new

matrix, which removes the noise from different affinity of

the probes. Such calculation was iterated until the sum of

the absolute residuals in the matrix becomes stabilized (the

sums of two successive iterations differed by \1%). SFPs

between the varieties were identified based on the residuals

of median polish using the limma package (Smyth 2004),

with BH adjusted P values. An example of the effect

obtained by median polish on SFP detection between the

two rice cultivars is demonstrated in Fig. 1 using the probe

set Os.10369.1.S1_a_at.

Using a threshold of BH adjusted P B 0.001, 6,655

SFPs from 3,131 probe sets, representing 15.5% of the total

probe sets with ‘‘Present’’ calls, were identified between

the two rice cultivars. Among them, 231 (7.4%) probe sets

contained six or more SFPs.

SFP confirmation by SNP analysis

To evaluate the robustness of the method, detected SFPs

were compared to the rice SNPs identified from ory-

zaSNP resequencing project (McNally et al. 2006). This

project produced 100 Mb of unique and low copy rice

genomic pseudo-sequences from 20 diverse rice lines,

including Minghui 63 and Zhenshan 97, by microarray-

based whole genome resequencing technology developed

by Perlegen Sciences.
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Based on the SNPs detected by OryzaSNP project, it was

found that SNPs between these two varieties occurred in

sequences corresponding to a total of 830 probe sets, 430 of

which were resolved in our analysis, resulting in a false

negative rate of 48.2% (Table 1). We checked the sequences

for the false negative detections, and found that a SNP in the

middle (the 13th base) of the 25-mer probe could be detected

as a SFP with a false negative rate of 26.9%, while a SNP in

the edge (the 1st and 25th bases) of the probe could be

detected with a false negative rate of 90.2% (see Supple-

mentary data Fig. 1 for the effect of SNP position for SFP

detection). Among the 400 false negative SNPs, 191 (47.8%)

were located within five bases from the ends (1st to 5th and

21st to 25th) of the probe sequences, while only 116 (29.0%)

false negative SNPs were located within the 9 (9th to 17th)

bases in the middle. Such positional effect of false negative

detection is similar to the results from previous studies (Cui

et al. 2005; Ronald et al. 2005; Rostoks et al. 2005).

Sequences for 569 of the 6,655 SFP detecting probes can

be mapped to the oryzaSNP sequences, 430 (75.6%) of the

mapped SFP probes have at least one SNP within the 25-

base probe region between Minghui 63 and Zhenshan 97,

and the remaining 139 (24.4%) SFPs did not show poly-

morphism between the two cultivars within the probe

sequences (Table 1).

SFP detection in single tissue and multiple tissues

In order to assess the impact of multiple biological samples

as replicates on SFP detection using median polish method,

we predicted SFPs using data from rice samples collected

at a single stage (single tissue), and compared the results to

that from multiple tissues presented above. Different

thresholds were used in different tissues to predict the same

number of 6,655 SFPs as in the previous analysis using

entire dataset. Totally, 91.4% SFPs detected by multiple

tissues were detected by at least one single tissue. How-

ever, the single tissue analysis led to more false discovery

and less sensitivity (Table 2), indicating positive gains of

having multiple tissues in such analysis.

Comparison of the median polish method

with other methods

For comparison, we re-analyzed our transcriptome data for

SFP identification using the method of fitting linear model

proposed by Rostoks et al. (2005). The exact method

described previously was used, except SAM which needed

large permutation (Tusher et al. 2001) was replaced with

limma (Smyth 2004) to reduce computational demands of

both time and memory. The detection power between

limma and SAM using rice data was found to be highly

similar: only 0.8% of the SFPs detected was different. In

order to make the results comparable, detection threshold

was adjusted to obtain a consistent number of 6,655 SFPs

for both methods. By doing so, the cutoff probability was

slightly different from 0.001 in this analysis. Totally, 4,937

(74.2%) of the 6,655 SFPs were the same between the two

methods. Under the selected threshold, the median polish

method had lower false positive, false negative and false
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discovery rates compared to the liner model fitting method

(Table 1). Moreover, even for the 139 SFPs called by

median polish method that did not have SNPs in the probes,

85 (61.2%) were also called by the Rostoks’ method,

indicating that the results from these two analyses were

highly consistent.

The SFPs predicted by the Rostoks’ method were also

validated by the same SNP data set from OryzaSNP pro-

ject. Among the 6,655 SFP probes, 546 can be mapped to

the oryzaSNP sequences, and 359 (65.8%) have SNPs

within the 25-base probe regions, which is lower than that

of the median polish method (75.6%). All but one of these

SFP probes were detected by the median polish method.

The remaining 187 (34.2%) were not supported by the

oryzaSNP resequencing data. These results suggested that

the median polish method has better detection sensitivity

and accuracy than the method of fitting linear model.

We also directly used the original normalized PM

intensities instead of residuals to identify SFPs. In doing

so, all PM intensities of each probe were grouped by

genotypes, and probes detecting significant difference

between the two genotypes (SFPs) were identified using

the limma package. When the detection threshold was

also adjusted to obtain 6,655 SFPs, this method obvi-

ously resulted in lower sensitivity and accuracy than both

the Rostoks’ method and the median polish method

(Table 1), indicating the positive gain of the median

polish.

We also analyzed the barley microarray data composed

of six tissues including radicle, root, leaf, embryo,

Table 1 Comparison of the detection power of different methods

Organism Method SFP number False negative rate (%) False positive rate (%) False discovery rate (%)

Rice Median polisha 6,655 48.2 0.90 24.4

Fitting linear model 6,655 56.7 1.21 34.2

NONE 6,655 58.7 1.28 36.6

Yeast Median polisha 3,387 78.9 0.25 11.1

Fitting linear model 3,387 81.4 0.48 21.2

Median polishb,c 1,049 53.5 0.09 2.5

PDNNc 1,049 55.3 0.22 6.2

Barley Median polishb 10,504 23.7 3.23 18.8

Fitting linear model 10,504 26.4 7.04 34.4

Method: median polish, a median polish step was employed to remove the transcript abundance effects from PM intensities; fitting linear model,

obtaining the genotype effect at the probe level to identify SFPs by fitting linear model, Rostoks et al. proposed (Rostoks et al. 2005); PDNN,

estimating the binding affinity of the probe to the transcript target based on the PDNN model, Ronald et al. proposed (Ronald et al. 2005); NONE,

using PM intensities to identify SFPs directly
a BH adjusted P values less than 0.001 were used in median polish method for claiming SFPs, and the threshold for the counterpart of the

comparison was adjusted to obtain an equal number of the predicted SFPs
b The threshold was adjusted to yield the same number of the predicted SFPs as in the published result (Ronald et al. 2005; Rostoks et al. 2005)

for comparison
c The yeast SFPs detected by the PDNN method (and the corresponding median polish method) used only three replicates from the diploid

genomes of the strains and a subset of the probe sets (which the authors regarded as robustly expressed probe sets)

Table 2 Efficiency of SFP detection between two rice cultivars using single tissue relative to all three tissues

Tissuea ALL (%) SBP (%) PSP (%) PCF (%)

False negative rateb 48.2 55.1 51.7 54.1

False positive ratec 0.90 1.18 1.05 1.08

False discovery rated 24.4 32.9 28.9 30.6

Consistent SFP detection with ALLe 100 67.6 76.8 71.3

a ALL, all the three rice panicle tissues; SBP, PSP, and PCF, samples from three different developing stages of panicles (see ‘‘Materials and

methods’’ for details). Each tissue was sampled with three biological replicates each with two technical repeats
b False negative: the rate in which SFPs were not predicted for probe sequences with known SNPs
c False positive: the rate of predicted SFPs among the sequences known not to contain SNPs
d False discovery: the rate of predicted SFPs whose probe sequences did not contain SNPs to the total number of SFPs. Both false positive and

false discovery include ones with flanking SNPs
e The rate of consistence of SFPs detected with single tissues relative to multiple tissues
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coleoptile and seedling crown, using the median polish

method, and compared the results with the original analysis

using the method of fitting linear model (Rostoks et al.

2005). It was shown that, with the same threshold of 10,504

SFPs and based on the available data, the median polish

method is superior in both sensitivity and accuracy

(Table 1).

We further compared these methods using yeast dataset

from Ronald et al. (2005). Microarray data used for SFP

detection between S. cerevisiae strains BY4716 (BY, an

isogenic strain to the reference yeast) and RM11-1a (RM, a

wild yeast strain) were downloaded from NCBI GEO

(Barrett et al. 2007). The dataset included 12 microarrays,

with three replicates from haploid and diploid genomes of

each strain. Using the median polish method, 3,387 SFPs

were detected between the two genotypes at P \ 0.001 from

all array data. As expected, for most (2,841) of the SFPs, BY

showed higher binding ability than RM as estimated by

average of residuals of median polish �EBY [ �ERMð Þ:Among

2,218 SFP detecting probes with available sequence infor-

mation, SNPs were detected between the two strains within

the 25 bases of 2,106 (95.0%) probes.

Interestingly, additional 546 SFPs were detected with

unexpected lower residuals of median polish in BY than in

RM �ERM [ �EBYð Þ; indicating weaker binding ability in the

reference strain BY than that of RM. We examined 186

SFP detecting probes from this group that have available

sequence information, and found that only 32 (17.2%) of

the 186 SFPs correspond to SNPs within the 25-base probe

regions. However, the density distributions of the average

absolute differences of residuals are similar between the

SFP groups with �ERM [ �EBY residuals and with �ERM\ �EBY

(Fig. 2), suggesting that there is an almost equal chance to

detect SFPs with unexpected �ERM [ �EBY:

When the same dataset was analyzed using the fitting

linear model method with the same threshold of 3,387

SFPs, it produced higher false negative, false positive and

false discovery rates than the median polish method

(Table 1). A further comparison of the median polish

method was also made against the method based on the

positional-dependent nearest-neighbour (PDNN) model

(Zhang et al. 2003) as in the original analysis, also dem-

onstrating that the median polish method has better

detection sensitivity and accuracy (Table 1).
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Fig. 2 The distribution of average absolute differences of residuals

between two yeast strains BY and RM. Totally 3,387 SFPs between

BY and RM were identified with BH adjusted P \ 0.001. Their

corresponding averages of residuals by median polish of BY �EBYð Þ
and RM �ERMð Þ and their absolute differences �ERM � �EBYj jð Þ were

calculated. The x axis shows �ERM � �EBYj j and the y axis is the

percentage of the distribution. The �ERM � �EBYj j are grouped

according to whether �ERM is larger than �EBY (white �ERM [ �EBY)

and (grey �ERM\ �EBY). The residuals of median polish are considered

as the affinity between transcript targets and the probe. The

distribution of the average absolute differences in �ERM [ �EBY group

are almost the same as in �ERM [ �EBY group, which means an equal

chance to be detected as SFP although most SFPs in �ERM [ �EBY

group are non-polymorphic probes
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SFPs and probe flanking polymorphisms

As presented above, 24.4% of the SFPs, that could be

repeatedly detected using different tissues and methods, did

not have SNPs in the probe regions according to the

OryzaSNP data. It was recently speculated that variations

between different targets in flanking sequences adjacent to

the probes may affect SFP detection (Borevitz et al. 2007;

Zhu and Salmeron 2007). To assess in what degree probe

flanking SNPs affect the detection of SFPs, we analyzed

flanking SNPs of 5,088 probes with available flanking

sequences longer than 20 bases at each end and the sequences

corresponding to all these probes are monomorphic between

the two rice varieties according to the data by the oryzaSNP

resequencing project (McNally et al. 2006). SNPs were

found within flanking 20 bases between Zhenshan 97 and

Minghui 63 for 217 probes. Among them, 77 probes have

flanking SNPs in the immediate adjacent ten bases, and 142

probes have SNPs within the flanking 11th to 20th base

region. Two probes with SNPs in both immediate adjacent 10

bases and 11th to 20th bases were removed from the analysis.

It was found that the probe flanking SNPs were signifi-

cantly associated with the SFP calls (Table 3; Fig. 3a).

Among the SFPs detected at P \ 0.001, SNPs occurred with a

frequency of 14.3% in the flanking ten bases, a 9.7-fold

enrichment comparing to the background frequency (1.5%)

resulting in P = 1.40e-04 by Fisher’s exact test (FET). SFP

calls were further enriched to 17-fold when the threshold

stringency increase to P \ 0.00001 (4/16, FET, P = 6.94e-

05). About a twofold enrichment (5.7%) of SNPs was also

observed in the flanking 11th to 20th base regions among the

SFP calls at P \ 0.001 compared with the background (2.8%).

We again used yeast microarray data (Ronald et al. 2005)

to validate the above observation (Fig. 3b). We particularly

focused on the erratic SFP probes with negative residuals
�ERM [ �EBYð Þ detected by reference yeast strain BY. A total

of 4,273 probes without polymorphisms within the 25 bases

but with SNPs in the flanking 20 bases of the probes were

selected for the analysis (Table 3). The concurrence of SFPs

with probe flanking SNPs was found to be significantly

higher than in the background. There are only 4.6% (2,127)

of the probes having SNPs in flanking ten bases among

46,595 monomorphic probes, compared to 15.1% (13)

among the 86 significant SFPs detected at P \ 0.001 (FET,

P = 1.39e-04). However, the rate of SNPs was not any

higher among the SFPs than the background in flanking 11th

to 20th base regions (1/86, FET, P = 0.98). These results

indicated that probe flanking polymorphisms were partially

responsible for SFPs, including SFPs resulting from negative

residuals.

SFPs and nucleotide composition of probe

flanking SNPs

We also investigated the possible effect of the nucleotide

compositions of the flanking SNPs on hybridization signals

of the SFPs. We first categorized the yeast flanking SNPs into

two groups according to their relative residuals of median

polish in RM and BY: �ERM [ �EBY or �ERM\ �EBY: We then

calculated the percentage of the four nucleotides in yeast

RM11-1a genotype, and plotted these percentages along the

different thresholds of BH adjusted P value generated from

SFPs detection in each group (Fig. 4). We found that ade-

nines appear as predominant form of purines in the
�ERM [ �EBY group under the same or more stringent P values

while guanines display opposite effects, suggesting possible

influence of adenines and guanines in the flanking SNPs to

the probe binding affinity. However, compared to the back-

ground, the observed differences are relatively small

although they are statistically significant (when using subset

flanking SNPs under SFPs detection P \ 0.05, �ERM\ �EBY:

v2 = 7.00, df = 3, P = 0.072; �ERM [ �EBY: v2 = 6.88,

df = 3, P = 0.076). Compared with purines, the curves of

pyrimidines (thymines and cytosines) showed weaker cor-

relation between the SNP nucleotide composition and the

flanking SFP formation.

RNA secondary structure induced

by flanking polymorphisms

It was speculated that the secondary structure of RNA

molecules in a solution may interfere with the binding to

Table 3 SFPs caused by flanking SNPs revealed with different thresholds

Perfect matched probe Rice Yeast

P \ 0.05a P \ 0.001a P \ 0.05a P \ 0.001a

Total 5,086b 131 35 46,595b 819 86

With SNPs in flanking 0–10 bp 75 (1.5%) 9 (6.9%) 5 (14.3%) 2,127 (4.6%) 74 (9.0%) 13 (15.1%)

With SNPs in flanking 11–20 bp 140 (2.8%) 10 (7.6%) 2 (5.7%) 2,146 (4.6%) 44 (5.4%) 1 (1.2%)

a Number of SFPs detected at the BH adjusted P values of 0.05 and 0.001, respectively
b Number of probes that are monomorphic in the probe region with flanking sequences available in public database. For the yeast data, we only

selected the probes with �ERM [ �EBY
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Fig. 4 The fraction distribution of nucleotide content of SNPs

flanking non-polymorphic probes resolved with different statistical

thresholds. Non-polymorphic probes with unique SNPs in the flanking

1–10 bases were selected and the nucleotide content of these SNPs of

yeast RM11-1a genotype were then surveyed using different thresh-

olds of BH-adjusted P values generated from SFP detection. The x
axis shows the BH adjusted P values and the y axis is the fraction of

certain nucleotide base. SNPs are grouped according to whether �ERM

is larger than �EBY (black �ERM [ �EBY) and (grey �ERM\ �EBY).

a Adenines appear as predominant form of purines in the
�ERM [ �EBY group under more stringent BH-adjusted P values, while

b guanines show the opposite trend, suggesting possible influence of

adenines and guanines in the flanking SNPs to the probe binding

affinity. Cytosines c and thymines d show weaker correlation between

the SNP nucleotide composition and the flanking SFP formation
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probes (Southern et al. 1999). To examine the changes of

cRNA secondary structure induced by flanking polymor-

phisms, we used the UNAfold software (Markham and

Zuker 2005; Walter et al. 1994) to calculate the minimum

free energies (DG) of 75-bp cRNA sequences that flank the

center of each probe extracted from BY and RM sequences.

A total of 3,439 polymorphic flanking sequence pairs with

monomorphic probe region and polymorphic flanking ten

bases were obtained. We also divided these sequence pairs

into two groups according to their relative residuals of

median polish: �ERM [ �EBY or �ERM\ �EBY: We then calcu-

lated the proportion of sequence pairs in which the RNA

free energy of RM sequences were greater than BY

sequences (proportion of DGRM-BY [ 0) according to dif-

ferent SFP detection P values. The results showed that

there was no change of DGRM-BY for 738 (21.5%) of the

sequences. A threshold of 50% quantile (absolute value of

DGRM–BY [ 0.60 kJ) was applied to filter sequence pairs

with different minimum RNA free energy between BY and

RM (see the Supplementary Fig. 2 for the distribution of

DGRM–BY). Although it is difficult to confirm all of the

predicted changes in RNA secondary structures, as the

accuracy of predictions of RNA secondary structures is

only 74% (Walter et al. 1994), we found that the minimum

free energy of RNA is correlated positively to the binding

affinity (Fig 5). Using a threshold of BH adjusted P values

less than 0.05, the percentage of sequence pairs with

DGRM–BY [ 0 (72.5%) in the �ERM [ �EBY group is signif-

icantly higher than the background level (54.1%, FET,

P = 0.012). Reversely, only 28.6% of the sequence pairs

with DGRM–BY [ 0 were found in the �ERM\ �EBY group.

However, the difference is statistically insignificant com-

pare to the background level (46.5%, FET, P = 0.29) due

to the less frequent occurrence and subsequently smaller

sample size (n = 7, at SFPs detection P \ 0.05). Unfor-

tunately, we are unable to conduct similar analysis in rice,

as the flanking sequences are not available presently.

Discussion

Median polish as a high performing

method for SFP detection

Molecular interactions between probes and targets are the

basis for microarray detection. Both binding affinity

between targets and probes and target abundance contrib-

ute to the output signals measured by microarray probes.

Ideally, one of the two factors ought to be fixed or ignored

in order to measure the other. For example, in transcrip-

tome analysis, only the abundance of the transcript targets

is considered as the variable. In the sequence analysis, in

contrast, the sequence differences between targets and

probes are considered as the major variable while the

abundance of the targets is assumed similar. However, such

a highly simplified model is not applicable in a variety of

microarray applications. SFPs are consequence of sequence

difference between corresponding targets from two sam-

ples detected by the same probes, providing opportunity to

detect sequence polymorphism, as well as challenge to

ensure accuracy in transcript abundance measurement in a

transcript analysis.

SFP detection from RNA derivative targets by micro-

array has the advantage of measuring both transcript

abundance and sequence variation at the same time (Cui

et al. 2005; Luo et al. 2007; Ronald et al. 2005; Rostoks

et al. 2005; West et al. 2007). It makes the SFP detection

more cost effective and possible in complex genomes by

using expressed transcripts as genome complexity reduc-

tion method (Cui et al. 2005; Gore et al. 2007; Rostoks

et al. 2005; Zhu and Salmeron 2007). However, the algo-

rithms used for analyzing such data requires not only
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Fig. 5 The fraction distribution of the free energy changes in non-

polymorphic probes with flanking SNPs resolved with different

statistical thresholds. Non-polymorphic probes with SNPs in the

flanking 1–10 bases were selected and their 75-bp cRNA sequence

pairs flanking the center of these probes were extracted from yeast BY

and RM sequences. The minimum RNA free energies of the sequence

pair (DGBY, DGRM) are then calculated and the difference between

DGBY and DGRM are calculated by subtracting DGBY from DGRM

(denoted as DGRM-BY). The fractions of DGRM–BY [ 0 were then

surveyed under different thresholds of BH-adjusted P values gener-

ated from SFP detection. The x axis shows the BH-adjusted P values

and the y axis is the fraction of DGRM–BY [ 0 with the statistical

thresholds. Sequence pairs are divided into two groups according to

whether �ERM is larger than �EBY (black �ERM [ �EBY) and (grey
�ERM\ �EBY). There is a trend that the proportion of sequence pairs

with DGRM–BY [ 0 increases in the group of �ERM [ �EBY while the

proportion decreases in the group of �ERM\ �EBY with more stringent

thresholds
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identifying differential hybridization signals but also dis-

secting contributing factors to these differential signals to

ensure sufficient detection power and accuracy.

We adapted a median polish based method to identify

SFPs using expression data from multiple tissues. Our

study suggested that the median polish method has superior

performance in SFP detection as evidenced by validation

using data from multiple genomes with different compo-

sition, structure, and complexity (Table 1). An additional

advantage of this method is that most methods for SFP

prediction need specific design of microarray experiments

(generally two groups under the same experimental con-

ditions with several repeats in each group) (Cui et al. 2005;

Das et al. 2008; Luo et al. 2007; West et al. 2006), our

median polish based method provides some uniquely useful

features for SFP detection. This method works for dis-

secting the expression data into and eliminate the effects of

transcript abundance and variations of binding affinity, thus

perturbation of transcript abundance resulting from differ-

ent experimental conditions and data types had little

interference with the sensitivity and accuracy of the SFP

detection. This method can also significantly reduce the

computing time required to perform the same SFP analysis

using the same data set, thus enable one to perform a SFP

analysis using more complex data set. The computing time

required for analyzing the rice data set in this study is less

than 1 min by the median polish method and 21 min by the

fitting linear model. The replacement of SAM with limma

could further reduce the memory requirements and com-

puting time by 50 times.

Complexity of SFP formation and the contribution

from probe flanking SNP

There are many factors influencing hybridization signal

from a RNA target, including whether the RNA target was

expressed in the sample, the abundance of the RNA target,

the GC content of the binding region, and the presence of

mismatch bases between the target and probe and their

location (Rostoks et al. 2005; Zhu and Salmeron 2007). It

was generally considered that mismatch bases within probe

sequences lead to reduced hybridization intensities and

formation of SFPs in comparative studies (Fig. 6).

However, the interaction between short oligonucleotide

probe and target is complex (Naef et al. 2002b) and

affected by many variables in addition to the above

described sequence specificity and abundance of targets

and probes. Such complexity can be at least demonstrated

by the following exceptional phenomena. First, probes

could produce greater hybridization signals from targets

with less complementary sequences. It is well known that a

significant fraction of MM probes, which are designed for

probe non-specific hybridization, can bind targets better

than the PM probes (Naef et al. 2002a, b; Zhang et al.

2003). In this study, 32 yeast SFPs with confirmed mis-

match bases between RM targets and probes was found to

have greater residuals of median polish in RM and more

than half of them (18/32) was found to have greater

hybridization signal in RM. Second, probes could produce

different hybridization signals from targets with identical

perfect complementary sequences. A total of 266 probes

detected statistically significant differential signals from

targets of RM and BY strains even these targets have

sequences perfectly matched the probes.

The interference of biotinated fluorescent labels (Naef

and Magnasco 2003) and stacking free energies of unla-

beled nucleic acids in solution (Carlon et al. 2006) are

among the hypothesized contributing factors to the first

phenomenon. However, neither of the hypotheses was fully

supported by experimental evidence (Wang et al. 2007).

The second phenomenon may relate to the influence of

the mismatch bases in the flanking region (Fig. 6). Mis-

match bases in the flanking region of a probe are generally

considered to have less direct effect on SFP detection and

thus less studied. However, our results from analyzing both

rice and yeast data clearly demonstrated that the probe

flanking SNPs could significantly contribute to SFP for-

mation as over 15% of non-polymorphic SFPs are associ-

ated with flanking SNPs, of which the background

contribution was less than 5%.

To uncover the molecular basis of the SFP formation by

the flanking SNPs, we surveyed the nucleotide composition

of the flanking SNPs and confirmed that adenines are over-

Perfect match with 
weak RNA 
secondary structure

Mismatch within 
probe

Perfect match but 
with stable RNA 
secondary structure

Signal at probe level

High signal

Low signal

Low signal

Fig. 6 Probe–target interaction and contribution to hybridization

signals. When target abundance is presumed to be at similar level,

target that matches probe perfectly and with weak secondary structure

produces a relative high signal, while target with mismatch within

probe region produces a relative low signal. When the flanking

polymorphisms can make more stable RNA internal secondary

structure, the binding affinity between probes and targets may lead to

reduced signal
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represented and guanines are underrepresented in the

flanking SNPs that lead to higher binding affinity. We also

calculated minimum free energies of 75-bp cRNA

sequences flanking the center of each probe and compared

their difference between targets. We found that the

hybridization affinity was correlated positively to the

minimum free energy of cRNA. The changes of predicted

minimum free energy of cRNA are significant. These

observations suggest that the flanking SNPs could lead to

the formation of SFPs by changing minimum free energies

of unlabeled RNA targets: a lower minimum free energy

may lead to more stable RNA internal secondary structure

thus reducing the hybridization affinity between probes and

targets.

To further investigate possible causes for the SFPs, we

inspected 28 rice SFPs (Table 3) that were detected at

P \ 0.001 but had no SNPs in either the probes or the

flanking 20 bp regions, 24 of which were genes with

EST/cDNA support in the TIGR database. Ten (41.7%) of

the 24 genes have more than one gene model presumably

due to alternative splicing, much higher than the esti-

mated 21.2% alternative splicing level of the rice genome

(Wang and Brendel 2006), suggesting the likelihood that

alternative splicing may also contribute to the SFP

detection. Moreover, 7 of the 28 SFP detecting probes

were the last ones (No. 11) in the respective probe sets.

Recently, unexpected 30 alternative termination of gene

transcription was observed by RNA sequencing of mam-

mal and yeast genomes (Carninci et al. 2005;

Nagalakshmi et al. 2008). Considering that the microarray

we used was Affymetrix 30 expression arrays, in which

the probes primarily target the 30 end of the genes, these

observations might also suggest possible differences in 30

alternative termination between the two genotypes. Fur-

thermore, the widely reported copy number variations

(insertions/deletions) of small DNA segments exist not

only in human and rat (Guryev et al. 2008; Stranger et al.

2007), but also in plants and other taxa (Clark et al. 2007;

Gresham et al. 2006). These copy number variations

along with alternative splicing and/or 30 alternative ter-

mination may affect the probe signal intensities, thus

might have been detected as SFPs in this analysis while

not necessarily detected by sequencing, thus contributing

to the discrepancies between the sequence data and SFP

detection.

Usefulness of the detected rice SFPs

Rice is a staple cereal for a large segment of the world

population. The two varieties used in this study, Zhenshan

97 and Minghui 63, are the parents of Shanyou 63, the most

widely grown hybrid in China. Hundreds of QTLs for a

large array of traits and yield heterosis have been mapped

using populations derived from this cross. Recently, a gene

underlying a major QTL for pleiotropic effects on heading

date and yield potential was cloned (Xue et al. 2008).

Although this is probably the most intensively studied cross

in rice genetic mapping, several large gaps ([20 cM) still

exist in the genetic map due to lack of polymorphic

markers in these regions (Hua et al. 2002; Xing et al.

2002), despite large efforts in adding more markers. Such

large gaps would have certainly affected the completeness

of the information for genetic mapping. The discovery of

6,655 SFPs in this study representing 3,131 rice unique

genes with a high validation rate supported by large scale

resequencing data, could generate an extra-high density

genetic map, thus greatly facilitate gene discovery in this

population.

In conclusion, median polish has superior performance

in SFP detection. This method avoids constructing complex

linear models thus could be used to genotype recombinant

inbred lines or double haploid population which cannot be

fit into linear models easily. Furthermore, it could be used

to remove the influence of SFPs in the expression analyses

using GeneChip arrays to improve accuracy of measure-

ment. In this aspect, it would be especially powerful when

the method is combined in the same automated workflows

with the robust multi-array average (RMA) (Irizarry et al.

2003), one of the most adapted algorithm for expression

analysis using GeneChip microarrays, which uses the same

algorithm.

We confirmed that probe flanking SNPs could lead to

SFPs in yeast and rice genomes that significantly different

in genome size, composition, and complexity level. This

finding has impact not only in SFP detection and its

application in genetic analysis, but also in expression

analysis using GeneChip and other short oligonucleotide

probe arrays. These probe flanking SNPs could affect the

binding affinity by changing the minimum free energy of

the unlabeled RNA target molecules. Our results also

indicated the complex compositions of SFP formation, for

a large of SFPs still cannot be explained by either probe

SNPs or flanking SNPs.

To the best of our knowledge, our study was the first

application of detecting SFPs using expression data in rice.

The success of our study demonstrated the applicability of

this approach. The detected rice SFPs would greatly

facilitate the effort of saturating the genome with molecular

markers.
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