
High Occurrence of Functional New Chimeric Genes in Survey

of Rice Chromosome 3 Short Arm Genome Sequences

Chengjun Zhang1,y, Jun Wang2,y, Nicholas C. Marowsky2, Manyuan Long1, Rod A. Wing3,*, and
Chuanzhu Fan2,*
1Department of Ecology and Evolution, University of Chicago
2Department of Biological Sciences, Wayne State University
3Arizona Genomics Institute, School of Plant Sciences, University of Arizona

*Corresponding authors: E-mail: cfan@wayne.edu; rwing@ag.arizona.edu.

yThese authors contributed equally to this work.

Accepted: May 1, 2013

Abstract

In an effort to identify newly evolved genes in rice, we searched the genomes of Asian-cultivated rice Oryza sativa ssp. japonica and its

wild progenitors, looking for lineage-specific genes. Using genome pairwise comparison of approximately 20-Mb DNA sequences

from the chromosome 3 short arm (Chr3s) in six rice species, O. sativa, O. nivara, O. rufipogon, O. glaberrima, O. barthii, and

O. punctata, combined with synonymous substitution rate tests and other evidence, we were able to identify potential recently

duplicated genes, which evolved within the last 1 Myr. We identified 28 functional O. sativa genes, which likely originated after

O. sativa diverged from O. glaberrima. These genes account for around 1% (28/3,176) of all annotated genes on O. sativa’s Chr3s.

Amongthe28newgenes, tworecentlyduplicatedsegmentscontainedeightgenes.Fourteenof the28newgenesconsistofchimeric

gene structure derived from one or multiple parental genes and flanking targeting sequences. Although the majority of these 28 new

genes were formed by single or segmental DNA-based gene duplication and recombination, we found two genes that were likely

originated partially through exon shuffling. Sequence divergence tests between new genes and their putative progenitors indicated

that new genes were most likely evolving under natural selection. We showed all 28 new genes appeared to be functional, as

suggested by Ka/Ks analysis and the presence of RNA-seq, cDNA, expressed sequence tag, massively parallel signature sequencing,

and/or small RNA data. The high rate of new gene origination and of chimeric gene formation in rice may demonstrate rice’s broad

diversification, domestication, its environmental adaptation, and the role of new genes in rice speciation
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Introduction

The genetic fundamental of organismal biodiversity is

considerably relied on origination of new genetic elements.

Myriad examples have provided evidence supporting

newly evolved gene involvement in adaptive changes

(Long and Langley 1993; Zhang et al. 2002; Long et al.

2003; Jones et al. 2005; Des Marais and Rausher 2008; Fan,

Emerson, et al. 2008; Zhou et al. 2008; Heinen et al. 2009;

Parker et al. 2009; Chen et al. 2010; Ding et al. 2010;

Potrzebowski et al. 2010; Charrier et al. 2012; Yeh et al.

2012). Understanding the molecular mechanisms involved in

the formation of new genes is progressing rapidly, although

many details of these mechanisms and their interactions await

further investigation. As reviewed previously (Long et al. 2003;

Kaessmann et al. 2009; Cardoso-Moreira and Long 2012;

Ranz and Parsch 2012), the major mechanisms of new gene

origination include but not limited to tandem gene duplica-

tion, exon shuffling, retroposition, mobile elements, horizon-

tal gene transfer, gene fusion/fission, de novo origination, or a

combination of two or more of the mechanisms (Wang et al.

2000; Bachtrog and Charlesworth 2003; Jones and Begun

2005). Systematical comparative genomic analysis using

Drosophila genomes revealed that DNA-based gene duplica-

tion and retroposition played major roles in the formation of

new genes (Yang et al. 2008; Zhou et al. 2008). Because of
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the limitation of genome sequence data and genetic

resources, we do not know yet about the prospect of new

gene formation in the plant kingdom as much as in animals,

though a few recent studies have demonstrated that many

similarities exist between plants and animals (Zhang et al.

2005; Wang et al. 2006; Fan et al. 2008; Zhu et al. 2009;

Sakai et al. 2011).

To understand the molecular processes and mechanisms

governing the evolution of new genes and their functions,

we must search for genes that originated recently and study

their origination patterns and functions. The methods of de-

tecting new genes have evolved dramatically with the

advancement of experimental and computational technology

and massive DNA sequence data generated in both model

and nonmodel organisms. Early discoveries of new genes

were largely based on the detection of a single gene by

chance. Phylogenetic comparisons of genetic signals (e.g.,

fluorescence in situ hybridization and genomic southern blot-

ting) have also been used as an efficient and reliable way to

identify new protein-coding genes in Drosophila and mam-

mals at a larger scale (Betrán et al. 2002; Wang et al. 2004;

Marques et al. 2005). This was not the case in plants, due to

technical challenges, for example, difficulty of cytogenetic

analysis for plant chromosomes and low efficiency and high

false-positive rate of genomic southern blotting analysis to

identify gene duplication events. In plants, previous works

have also provided a tool that used array-based comparative

genomic hybridization to identify potential new genes in the

closely related Arabidopsis species (Fan et al. 2007). However,

the most effective technique for finding duplications and

further identifying new genes would be a genomic sequence

comparison based on the availability of genome sequences.

Similar efforts have been applied in the analysis of several

other genomes and yielded a fair amount of information

contributing to our understanding of the evolution of genes

and genomes (Stein et al. 2003; Chimpanzee Sequencing and

Analysis Consortium 2005; Marques et al. 2005; Yu et al.

2005; Clark et al. 2007; Jun et al. 2009; Liti et al. 2009;

Marques-Bonet and Eichler 2009; Marques-Bonet et al.

2009; Green et al. 2010; Jensen and Bachtrog 2010; Gan

et al. 2011; Hu et al. 2011; Kim et al. 2011; Locke et al.

2011; Zhang et al. 2011; Scally et al. 2012). Moreover, com-

paring closely related species, as demonstrated in the

Drosophila melanogaster subgroup (Yang et al. 2008; Zhou

et al. 2008), provided more powerful strategy for identifying

gene duplication events across the entire genome and for

revealing the extent and pattern of new gene originations.

As part of an international effort to characterize the func-

tions of all rice genes (Zhang et al. 2008), sequences of chro-

mosome 3 short arm (Chr3s) using the bacterial artificial

chromosome (BAC)-based physical maps to select minimum

tilling paths of BAC clones in most Oryza species have been

finished and are publically available. Therefore, these genomic

sequence data provide an opportunity to decipher gene and

genome evolution at the phylogenetic level within a single

genus using comparative genomics approaches. The genus

Oryza is composed of 23 species that diverged over a relatively

short time period approximately 15–20 Ma with broad diver-

sification and largely solved phylogenetics (Ge et al. 1999; Zhu

and Ge 2005; Ammiraju et al. 2008; Tang et al. 2010). Oryza

sativa ssp. japonica and O. glaberrima are Asian- and African-

cultivated rice species, respectively. Phylogenetically, O. sativa

ssp. japonica and O. glaberrima belong to the AA genome

type in the genus Oryza, which diverged roughly from 0.5 to 1

Ma (Ammiraju et al. 2008; Tang et al. 2010). Species of

O. punctata belongs to the BB genome type and is used as

outgroup of the AA genome Oryza species for phylogenetic

analysis. AA and BB genome type species diverged at around

2–5 Ma (fig. 1) (Ammiraju et al. 2008; Tang et al. 2010).

Through the genome sequence comparisons between Asian

rice species (including O. sativa, O. nivara, and O. rufipogon)

and African rice species (including O. glaberrima, O. barthii,

and O. punctata), this study aimed to identify Chr3s potential

new genes, which recently originated in O. sativa and/or its

wild species progenitors, O. nivara and O. rufipogon.

Materials and Methods

Searching O. sativa ssp. japonica-Specific New Genes by
Comparative Genome Analysis

Sequence data of Chr3s in O. glaberrima, O. punctata, and

O. barthii, O. nivara and O. rufipogon were downloaded from

Gramene (http://www.gramene.org/). Chr3s sequences of

O. sativa ssp. indica were downloaded from 2003/10/7 BGI

version (ftp://ftp.genomics.org.cn/pub/ricedb/rice_update_

data/genome/9311). The whole-genome sequences of

O. glaberrima were downloaded from http://www.

iplantcollaborative.org/. We performed genome pairwise

comparisons between O. sativa ssp. japonica Chr3s coding

sequences (CDSs) and other five species Chr3s genome se-

quences. The annotation and CDSs of O. sativa ssp. japonica

were downloaded from Michigan State University (MSU) Rice

Genome Annotation Project (RGAP, MSU V7) (http://rice.

plantbiology.msu.edu/downloads.shtml). To search for the

O. sativa-specific new genes, the first step was to identify

the Chr3s orthologous genes among six species. We used

two criteria to define the orthologous genes. First, we con-

ducted a BLAT (Kent 2002) search for Chr3s orthologous

genes by aligning genome sequences of O. glaberrima, O.

sativa ssp. indica, O. barthii, O. punctata, O. nivara, and O.

rufipogon against the CDSs of O. sativa ssp. japonica. We had

two requirements: the alignment of the orthologous sequence

needed to cover over 95% of the length of the O. sativa ssp.

japonica CDSs and must be located in the synteny region of all

the genomes. Whether an O. sativa ssp. japonica gene was

considered in the synteny region was defined by the presence

of at least two flanking genes in the 30-kb DNA fragment
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containing the gene hit in other genomes. Second, the ortho-

logous sequences were defined as two sequences with recip-

rocal best hits of each other. We conducted the reciprocal

searches using BLAT and defined a pair of sequences from

two genomes having the best hit against each other as “re-

ciprocal” best hits. We descendingly sorted the hits according

to the BLAT alignment score and then BLAT identity score

(http://genome.ucsc.edu/FAQ/FAQblat.html#blat4 for meth-

ods to compute these two scores). We then defined the

ones ranking in the first as the “best” hits. After we identified

the orthologous genes, we filtered them out, and picked the

remaining annotated genes, which are only present in O.

sativa ssp. japonica and/or the other three Asian rice species

(O. sativa ssp. indica, O. rufipogon, O. nivara) but are absent in

all the African rice species O. glaberrima, O. barthii, and O.

punctata (fig. 1). We further BLAT CDSs of O. sativa ssp. ja-

ponica-specific genes to the entire O. glaberrima genome and

identified their homologous regions in O. glaberrima. The re-

sults were then BLAT back to all CDSs of O. sativa ssp. japon-

ica. We only selected O. sativa ssp. japonica genes, which did

not have reciprocal BLAT best hits in O. glaberrima genome as

O. sativa ssp. japonica new gene candidates. These genes

likely originated after the divergence between Asian rice spe-

cies and African rice species about 1 Ma. We further estimated

the average rates of synonymous substitution (Ks) using gKaKs

pipeline with Yn00 method for all Chr3s orthologous genes

earlier identified between O. sativa ssp. japonica and O. gla-

berrima (Zhang et al. 2013).

To determine the origination pattern of these recently

evolved new genes in O. sativa ssp. japonica, we searched

for their paralogs in the O. sativa ssp. japonica genome. To

identify paralogous gene pairs, we BLAT the CDSs of the can-

didate genes against all the CDSs of O. sativa ssp. japonica

with the match length of the paralogous gene pair more than

100 bp and mismatch length/(mismatch length + match

length) less than 0.1. We picked up only the paralogous

gene pairs with Ks less than 0.0192, which is the average Ks

of the orthologous gene pairs between O. sativa ssp. japonica

and O. glaberrima corresponding to 1 Myr divergence time.

We further removed the genes with “retrotransposon pro-

tein” and “transposon protein” terminology in their annota-

tions to define the list of O. sativa ssp. japonica new gene

candidates. Next, to test whether these O. sativa lineage-spe-

cific new genes were ancient duplicate genes that lost in

African Oryza species, we applied reciprocal BLASTP searches

to identify whether these new gene candidates contain ortho-

logous copies in other distantly related species. We BLASTP

protein sequences of these new gene candidates to all pro-

teins in Uniprot (http://www.uniprot.org/), which includes

SwissProt and TrEMBL data. If a new gene candidate had

hits in other species, we BLASTP these hits back to all

O. sativa ssp. japonica proteins (http://www.gramene.org/

Multi/blastview). If this best hit from BLASTP search was the

new gene, we deleted this new gene candidate. We also used

Repeatmasker (RepeatMasker libraries version: rm-20120418)

to scan the transposons existing in CDSs of new gene

candidates.

Sequence Divergence and Phylogenetic Analysis

We calculated the ratio of nonsynonymous substitution and

synonymous substitution rates (Ka/Ks, donated as “o") using

maximum likelihood algorithm (codeml) implemented in the

PAML package (Yang 2007). The significance of o that devi-

ated from neutrality (o¼1) was tested using the likelihood

ratio test (LRT). We aligned the sequences of paralogous/

orthologous gene pairs using bl2seq (Altschul et al. 1997).

We used codeml to calculate the o value between the two

FIG. 1.—Phylogeny of six rice species showing the species divergence time and an illustration of new gene origination in Oryza sativa. Genes “A,” “C,”

and “D” are orthologous in six species. Gene “B” is a new gene in O. sativa and/or Asian rice species. “AA” stands for the Oryza “A” genome type. “BB”

stands for Oryza “B” genome type.
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sequences (Yang and Nielsen 2000). We then used codeml

with two models (o fixed at 1 and o varying freely) to test

whether any of the identified new genes were statistically

under natural selection (Yang 2007). Phylogenetic analysis

of the gene tree was performed using Neighbor Joining algo-

rithm implemented in PAUP (Swofford 2002). The CDSs of the

gene family were aligned using ClustalW (Larkin et al. 2007).

The bootstrap analysis with 1,000 replicates was used to

assess the robustness of the branches.

To address whether o< 1 is due to that the parental gene

is under strong purifying selection and the new gene is a

pseudogene evolving neutrally, we applied PAML branch

model to calculate o values for the branch leading to new

genes. We first downloaded the recently completed whole-

genome sequences of O. glaberrima, O. barthii, and O. punc-

tate from http://www.iplantcollaborative.org. We identified

the orthologous sequences of parental genes from the three

outgroup species using ortholog search approach described

earlier. We aligned only homologous region for all se-

quences using MAFFT (Katoh et al. 2005) and Perl scripts.

We estimated o for the foreground branch leading to the

O. sativa ssp. japonica lineage-specific new gene and for back-

ground branches leading to the parental genes and their

orthologous genes in outgroup species (O. glaberrima,

O. barthii, and O. punctata). We used a two-ratio model

allowing different o in foreground and background branches

with PAML codeml. The significant level of foreground branch

o was tested using LRT compared with the null hypothesis of a

model where foreground o fixed to 1 and background o
varied freely (Yang 2007).

Expression Analysis

The expression of identified new genes was determined by the

presence of full-length cDNA (FL-cDNA), expressed sequence

tag (EST; Pontius et al. 2003), RNA sequencing transcriptome

data (RNA-seq) (He et al. 2010; Zemach et al. 2010; Davidson

et al. 2012), massively parallel signature sequencing (MPSS)

(Nakano et al. 2006), and small RNA sequencing signatures

(Nobuta et al. 2007). RNA-seq data, which were processed by

RGAP, were downloaded from http://rice.plantbiology.msu.

edu/expression.shtml. The transcription abundance was

reported in fragments/kilobase of transcript/million fragments

mapped (FPKM) across 11 libraries including leaves—20 days,

postemergence inflorescence, pre-emergence inflorescence,

anther, pistil, seed-5 DAP, embryo-25 DAP, endosperm-25

DAP, seed-10 DAP, shoots, and seedling four-leaf stage (sup-

plementary table S1, Supplementary Material online,

DAP¼Days After Pollination). RGAP used Tophat v1.2.0 to

map the sequence reads to the version 7 pseudomolecules

in RGAP (Trapnell et al. 2009) and used Cufflinks v0.9.3 to

calculate the expression abundances for RNA-seq libraries

(Trapnell et al. 2010).

The National Center for Biotechnology Information (NCBI)

EST library collection of O. sativa ssp. japonica was down-

loaded from http://www.ncbi.nlm.nih.gov/UniGene/lbrowse

2.cgi?TAXID¼4530&CUTOFF¼0, which contained 1,047,

507 ESTs from 259 EST libraries expressed in 12 tissues (sup-

plementary table S2, Supplementary Material online). We

used BLAT to identify the genes corresponding to the ESTs

with Basic Local Alignment Search Tool (BLAST) tabular format

as output (the blat option – out¼ blast8). The criteria to define

the corresponding gene of an EST were as follows: 1) the CDS

of the gene was the first best hit of the EST; 2) the alignment

of the EST and the best hit gene had an at least 95% identity,

�1e�20 E value, and at least 100 BLAST score; and 3) the

BLAST score of the first best gene hit was at least 5 points

higher than that of the second gene hit (Wang et al. 2012).

Thus, the corresponding relationships between ESTs and

26,577 current annotated genes were constructed. We then

collected the EST information for all O. sativa new genes.

MPSS and small RNA expression data were obtained from

http://mpss.udel.edu/rice/mpss_index.php. MPSS expression

data were reported in the sum for the abundance of unique

signatures in transcripts/million in 70 tissues (supplementary

table S3, Supplementary Material online). Small RNA expres-

sion data were reported in the sum for the abundance of all

the signatures in transcripts/quarter million in six tissues (stem,

germinating seedlings, immature panicles, germinating seed-

ling infected with Magnaporthe grisea, seedlings treated with

Abscisic acid (ABA), and seedlings control for ABA treatment)

(supplementary table S4, Supplementary Material online).

Because small RNAs can be biologically active in more than

one sequence that they match, sequence matches for small

RNA were not required to be a unique signature.

Identification of New Chimeric Genes

After we compared the new genes with their paralogs, we

detected that many new genes have formed chimerical gene

structures with flanking sequences or other gene sequences.

If the flanking or other gene sequences that a new gene

recruited in the CDS are larger than 30 bp, we considered it

as a new chimeric gene. To identify whether a new chimeric

genes has transcription evidence for the chimerical CDS struc-

ture, we mapped EST, full-length cDNA, and RNA-seq

sequences to the junctions of chimera. We obtained

RNA-seq raw data from NCBI Sequence Read Archive

(SRA: SRR352184.sra, SRR352187.sra, SRR352189.sra,

SRR352190.sra, SRR352192.sra, SRR352194.sra,

SRR352204.sra, SRR352206.sra, SRR352207.sra,

SRR352209.sra, SRR352211.sra, SRR042529.sra,

SRR034580.sra, SRR034581.sra, SRR034582.sra,

SRR034583.sra) from http://sra.dnanexus.com/dispatch_

many. We preprocessed the RNA-seq data with quality control

using trim_galore (Version 0.2.5) (http://www.bioinformatics.

babraham.ac.uk/projects/trim_galore/) before mapping.

New Chimeric Genes in Rice Genome GBE

Genome Biol. Evol. 5(5):1038–1048. doi:10.1093/gbe/evt071 Advance Access publication May 7, 2013 1041

http://www.iplantcollaborative.org
http://rice.plantbiology.msu.edu/expression.shtml
http://rice.plantbiology.msu.edu/expression.shtml
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://www.ncbi.nlm.nih.gov/UniGene/lbrowse2.cgi?TAXID=4530&CUTOFF=0
http://www.ncbi.nlm.nih.gov/UniGene/lbrowse2.cgi?TAXID=4530&CUTOFF=0
http://www.ncbi.nlm.nih.gov/UniGene/lbrowse2.cgi?TAXID=4530&CUTOFF=0
http://www.ncbi.nlm.nih.gov/UniGene/lbrowse2.cgi?TAXID=4530&CUTOFF=0
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://mpss.udel.edu/rice/mpss_index.php
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt071/-/DC1
http://sra.dnanexus.com/dispatch_many
http://sra.dnanexus.com/dispatch_many
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


We removed duplications existing in aligned reads due to po-

lymerase chain reaction using picard-tools-1.79 (http://picard.

sourceforge.net/) after mapping. Given the length of the RNA-

seq reads ranging from 35 to 40 bases, we extracted 32-bp

DNA sequences of upstream and downstream flanking re-

gions center at the breakpoints of a chimeric gene. We then

mapped the RNA-seq reads to the extracted flanking DNA

sequences with Tophat v2.0.7 (Trapnell et al. 2009). Finally,

we checked whether any RNA-seq reads aligned on these

flanking sequences and crossed the chimerical breakpoints.

We applied similar approach to map the EST sequence data

to the extracted chimera breakpoint flanking DNA sequences

with BLAT. We also checked whether these chimeric genes

have FL-cDNA through browsing http://rice.plantbiology.msu.

edu/cgi-bin/gbrowse/rice/.

Results

Identification of Potential New Gene Candidates for
O. sativa ssp. japonica

Three steps were carried out to detect the potential new

genes that recently originated in O. sativa ssp. japonica and

its wild progenitors. First, the comparative genomic analysis of

Chr3s pseudomolecules among six species identified 862

annotated genes only present in O. sativa ssp. japonica and/

or its progenitors. Second, from the 862 gene candidates, we

filtered out the gene candidates, which had reciprocal best

hits in the O. glaberrima whole-genome sequence. This

yielded 753 O. sativa ssp. japonica-specific gene candidates.

Third, we BLAT these 753 candidates to all the CDSs of

O. sativa ssp. japonica to find the best-hit paralogs and then

calculated the Ks between O. sativa ssp. japonica-specific gene

and its paralog. On the basis of the average Ks¼ 0.0192 of

1,797 Chr3s orthologous genes between O. sativa and

O. glaberrima, we inferred that the paralogous pairs with Ks

less than 0.0192 were potential new genes that likely origi-

nated after the divergence of O. sativa ssp. japonica and

O. glaberrima from their common ancestor around 0.5–1

Ma. We further removed four new gene candidates, which

have orthologs in other plant species presented in Uniprot

database by reciprocal BLASTP approach. These four genes

likely were old duplicate genes that later lost in O. glaberrima.

Overall, we identified 28 new genes in O. sativa as listed in

table 1.

Origination Pattern of O. sativa ssp. japonica New Genes

The origination patterns of these new genes were revealed by

the location, gene structure, and sequences comparison be-

tween new genes and their paralogous progenitors in

O. sativa ssp. japonica. A 30-kb telomeric region containing

three functional new genes was generated through a seg-

mental duplication of an unmapped annotated region in

O. sativa genome (supplementary figs. S1 and S2A–C,

Supplementary Material online). Four adjacent annotated

genes, LOC_Os03g24960, LOC_Os03g24970, LOC_

Os03g24980, and LOC_Os03g24990, are located in the

middle of Chr3s within a13-kb fragment, which is unique to

AA genome rice species. By identifying the paralogs of these

four genes, we concluded that these genes originated

through segmental gene duplication followed by tandem du-

plication. LOC_Os04g30860 and LOC_Os04g30870 appeared

to be the most closely related parental genes given their struc-

ture, sequence similarity, and phylogenetic analysis (supple-

mentary figs. S3 and S4, Supplementary Material online).

A partial segment of the region between these two genes

was involved in a segmental duplication, which possibly

gave rise to LOC_Os03g24960 and LOC_Os03g24970 after

the divergence of O. sativa and O. punctata (~2–5 Ma). Both

LOC_Os03g24980 and LOC_Os03g24990 that originated

after the divergence of O. sativa and O. glaberrima (~0.5–1

Ma) appeared to be chimeric. LOC_Os03g24990 was possibly

generated by DNA-level recombination of LOC_Os03g24960

and its target flanking sequence. LOC_Os03g24980 recruited

exons of LOC_Os03g24970 and local sequences as its intron

(supplementary fig. S2W–X, Supplementary Material online).

For the remaining 23 new genes, 21 were apparently gen-

erated through the single-gene DNA level recombination-

mechanism gene duplication (supplementary fig. S2,

Supplementary Material online). Comparing gene DNA se-

quences and exon–intron structure between new genes and

parental genes, we observed four general patterns of DNA-

based recombination and duplications for new gene origina-

tion in O. sativa Chr3s: 1) the new gene recruited partial

parental gene sequences to form a new chimerical gene

structure (fig. 2A), for example, LOC_Os03g01490,

LOC_Os03g02340, LOC_Os03g07270, LOC_Os03g09130,

LOC_Os03g11860, LOC_Os03g15110, LOC_Os03g18650,

LOC_Os03g21310, LOC_Os03g25950, and LOC_

Os03g29140. 2) The new gene recruited partial parental

gene sequences formed an intact nonchimeric gene

(fig. 2B), for example, LOC_Os03g02130, LOC_Os03g

03050, LOC_Os03g04760, LOC_Os03g07690, LOC_Os03

g15060, and LOC_Os03g24630. 3) The new gene

adopted the entire parental gene sequences and both

genes shared the same exon–intron gene structure (fig. 2C),

for example, LOC_Os03g07090,LOC_Os03g32526, and

LOC_Os03g33920. 4) The new gene recruited the entire pa-

rental gene sequences but formed a different exon–intron

gene structure (fig. 2D), for example, LOC_Os03g12480 and

LOC_Os03g16320.

Though DNA-based gene duplication seems to be the

major mechanism generating new genes in rice, we also

found two genes generated through exon duplication and

shuffling. LOC_Os03g10840 was originated from the last

exon of LOC_Os03g11130 and formed a chimeric gene by

recruiting the flanking region of its insertion site (supplemen-

tary fig. S2N, Supplementary Material online). Similarly,
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LOC_Os03g12580 was formed from shuffling the first exon of

LOC_Os06g01010 and its flanking sequences (supplementary

fig. S2P, Supplementary Material online).

Chimeric gene formation appears to be very common in

new rice genes. Among 28 O. sativa new genes that we

observed, 14 new genes are chimerical. The chimerical CDS

structure of a new gene is mostly formed by recruiting entire

or partial parental gene sequences and DNA sequences from

the insertion site (fig. 3A). However, we did find one new

gene, LOC_Os03g09130, which was developed from two

genes and an insertion of a DNA fragment (fig. 3B). We fur-

ther examined the transcription of chimerical CDS structure

using the expression data. Using RNA-seq data, we found

eight chimeric genes that contain RNA-seq reads covering all

the breakpoints and three chimeric genes that have RNA-seq

reads covering some breakpoints. Using EST data, we identi-

fied three chimeric genes that have EST sequences covering all

the breakpoints and one chimeric gene that has EST sequence

covering some breakpoints. Furthermore, five chimeric genes

have FL-cDNA (supplementary table S5, Supplementary

Material online). In summary, the chimerical CDS structure

for all 14 chimeric genes was confirmed by RNA-seq, EST,

and/or FL-cDNA sequence data.

Evolution Pattern of O. sativa ssp. japonica New Genes

We calculated o values to gain insight into the evolution of

O. sativa ssp. japonica new genes (supplementary table S6,

Supplementary Material online). Because all new genes orig-

inated and evolved very recently (<1 Ma), we observed very

low number and rates of both synonymous and nonsynony-

mous substitution (supplementary table S6, Supplementary

Material online). Nineteen of the 28 paralogous pairs

showed no synonymous substitution and/or nonsynonymous

substitution. For the remaining nine paralogs, four of them

hado values less than neutrality, and five hado values greater

than 1 (supplementary table S6, Supplementary Material

online). Furthermore, LRTs for the sequence divergence of

the majority of 32 paralogous genes did not show significant

deviation from neutrality. This was likely due to the recent

Table 1

The New Genes, Paralogs, and Creation Mechanisms

New Gene Annotation Paralogs Possible Formation Mechanisms

1 Os03g01008 Expressed protein ChrSy.fgenesh.mRNA.80 Segmental duplication

2 Os03g01014 Expressed protein ChrSy.fgenesh.mRNA.82 Segmental duplication

3 Os03g01020 Pectinesterase inhibitor

domain containing protein

ChrSy.fgenesh.mRNA.85 Segmental duplication

4 Os03g01490 Expressed protein Os03g01420 Tandem duplication, chimera

5 Os03g02130 Hypothetical protein Os01g63170 Gene duplication

6 Os03g02340 Expressed protein Os05g05090 Gene duplication, chimera

7 Os03g03050 Expressed protein Os07g20240 Gene duplication

8 Os03g04760 Expressed protein Os05g11820 Gene duplication

9 Os03g07090 Expressed protein Os11g08990 Gene duplication

10 Os03g07270 Glycine-rich cell wall protein Os01g57250 Gene duplication, chimera

11 Os03g07690 Expressed protein Os01g22910 Gene duplication

12 Os03g09130 Expressed protein Os03g18760/Os11g07660 Gene duplication, chimera

13 Os03g10840 Expressed protein Os03g11130 Exon shuffling, chimera

14 Os03g11860 Expressed protein Os01g09060 Gene duplication, chimera

15 Os03g12480 Expressed protein Os06g42410 Gene duplication

16 Os03g12580 Expressed protein Os06g01010 Exon shuffling, chimera

17 Os03g15060 Expressed protein Os01g19250 Gene duplication, chimera

18 Os03g15110 Expressed protein Os03g46230 Gene duplication, chimera

19 Os03g16320 Expressed protein Os04g50840 Gene duplication

20 Os03g18650 Hypothetical protein Os05g38540 Gene duplication

21 Os03g21310 Ulp1 protease family Os08g33280 Gene duplication, chimera

22 Os03g24630 Hypothetical protein Os05g36060 Gene duplication

23 Os03g24980 SWIM zinc finger family protein Os03g24970 Tandem gene duplication, chimera

24 Os03g24990 Ulp1 protease family Os03g24960 Tandem gene duplication, chimera

25 Os03g25950 Expressed protein Os12g32810 Gene duplication, chimera

26 Os03g29140 Expressed protein Os01g09060 Gene duplication, chimera

27 Os03g32526 tRNA-splicing endonuclease

positive effector related

Os06g20500 Gene duplication

28 Os03g33920 Conserved hypothetical protein Os06g36630 Gene duplication
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gene duplication that has not yet accumulated enough sub-

stitutions to give adequate statistical power.

Based on branch-specific o analysis, six new genes have

branch-specific o less than 0.5. One new gene has branch-

specific o ranging between 0.5 and 1. Nine new genes have

branch-specific o more than 1 ranging from 1.92140 to

999.000. Moreover, LRTs showed that four new genes

(LOC_Os03g12480, LOC_Os03g21310, LOC_Os03g24990,

and LOC_Os03g32526) have branch-specific o significantly

smaller than 1 (supplementary table S7, Supplementary

Material online).

Expression of New Genes in O. sativa ssp. japonica

All 28 new O. sativa genes appeared to be transcribed, as

evidenced by the presence of RNA-seq, EST and/or FL-cDNA

sequence, and/or small RNA/MPSS sequencing signature

(table 2). Sixteen of the 28 new genes had at least two evi-

dences of expression (table 2). Three genes, LOC_

Os03g01014, LOC_Os03g01490, and LOC_Os03g07270

had high mRNA enrichment in RNA-seq data (supplementary

table S1, Supplementary Material online). Among them, the

expression of the two genes including LOC_Os03g01014

and LOC_Os03g07270 was enriched in different

tissues: LOC_Os03g01014 was highly expressed in leaves.

LOC_Os03g07270 was mainly transcribed in preinflorescence,

pistil, seed, and embryo (supplementary table S1,

Supplementary Material online). Accumulation of mRNA

from two genes (LOC_Os03g01020 and LOC_Os03g01490)

appeared to be fairly high in vivo, as revealed by the presence

of 9 and 40 independent EST sequences in GenBank, respec-

tively (supplementary table S2, Supplementary Material

FIG. 2.—Illustration and example of four general patterns of new gene origination in Oryza sativa genome. The genes above are new genes and the

genes below are parental genes. (A) New gene formed chimeric gene structure from partial parental gene sequence. (B) New gene formed intact and

nonchimeric structure from partial parental gene. (C) New gene formed from entire parental gene and shared same exon–intron gene structure. (D) New

gene formed from entire parental gene but with different exon–intron gene structure. Exon, filled box; intron, solid line; homologous region, dash line. The

start and stop codons are marked for each gene.
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online). Two genes, LOC_Os03g01020 and

LOC_Os03g01490, expressed substantial enrichments in

MPSS (supplementary table S3, Supplementary Material

online). Eight genes, LOC_Os03g11860, LOC_Os03g29140,

LOC_Os03g12850, LOC_Os03g25950, LOC_Os03g02340,

LOC_Os03g02130, LOC_Os03g24630, and

LOC_Os03g24980, appeared to be enriched in small RNA se-

quencing signatures (supplementary table S4, Supplementary

Material online). Moreover, these eight genes showed tran-

scription of small RNA signatures in different tissues and de-

velopmental stages (supplementary table S4, Supplementary

Material online). To compare the general pattern of small RNA

expression signatures between new genes and regular func-

tional genes, we randomly picked up 500 functional genes

and found that 82.2% of the 500 genes show small RNA

expression signature, thus the small RNA signature was

higher in regular functional genes than in the new genes.

Discussion

High Rate of New Gene Origination in Rice Genome

Oryza sativa ssp. japonica Chr3s contains approximately 3,100

annotated CDSs including hypothetical and transposable ele-

ment (TE)-related genes. In our effort to systematically search

for potential new genes, which recently evolved in O. sativa

ssp. japonica, we were able to identify 28 new genes, which

account for 1% of total genes on Chr3s. However, it is likely

that we underestimated or possibly overestimated the true

number of new genes in O. sativa ssp. japonica. These

values may be underestimates of the true number of new

genes considering two reasons. First, we filtered out all TE-

related genes (“retrotransposon protein” and “transposon

protein”) after the unique O. sativa ssp. japonica genes

were found. Second, we used the average Ks value of ortho-

logous genes between O. sativa ssp. japonica and O. glaber-

rima as a cutoff value to define the age of the paralogous

duplication event. It is likely that some new genes evolved

quickly and that the substitution rate may be elevated.

These criteria could possibly ignore some new genes based

on their high synonymous substitution rate. Meanwhile, the

number of new genes that we identified might be overesti-

mates of the true number of new genes given two possibili-

ties. First, although O. sativa ssp. japonica new genes do not

have orthologs in O. glaberrima, it is possible to have orthologs

present outside of Chr3s in other rice species due to chromo-

somal rearrangement (e.g., segmental duplication and trans-

position). Second, the low Ks values, which can be resulted

from gene conversion and locally reduced mutation rate, may

not truly reflect the age of duplications. Therefore, considering

both situations, we estimated that O. sativa ssp. japonica-spe-

cific new genes would account for 0.8–2% of total annotated

genes in the entire rice genome. RGAP annotated a total of

56,797 genes including putative, expressed, hypothetical, and

TE-related genes (http://rice.plantbiology.msu.edu/riceInfo/

info.shtml#Genes). Therefore, we deduced that the rice

genome (a total of ~57,000 genes) might have 500–1,000

new genes (0.0088–0.017/gene/Myr), which evolved around

1 Ma after O. sativa ssp. japonica split from O. glaberrima.

This new gene origination rate (per gene per Myr) in rice

FIG. 3.—Illustration and example of chimeric new gene. (A) New gene formed from one parental gene. (B) New gene formed from two parental genes.

Exon, filled box; intron, solid line; homologous region, dash line. The start and stop codons are marked for each gene.
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genome was over 10-fold higher than in Drosophila, which

was estimated at 5–11 genes/Myr (0.0004–0.00092/gene/

Myr) for the D. melanogaster subgroup genomes (a total of

12,000 genes) (Zhou et al. 2008). A caveat in this estimate

was our assumption that the new gene distributions on the

sequenced Chr3s were representative of the whole rice

genome. However, this pilot analysis already revealed the

high rate of new gene origination in the recent evolution of

these species. One major force was likely responsible for the

rapid occurrence of new genes in rice genome. Though genus

Oryza stands as a small group in the plant kingdom containing

only 23 species, the diversity and ecological adaptability of

rice, which is found in a wide range of habitats from forest,

savanna, and mountainsides to river and lakes, is remarkable

and could drive the rapid occurrence of new genes in rice

genome (Ge et al. 1999; Vaughan et al. 2003).

New Gene Originated as Chimera in Rice Genome

Chimeric genes represent a class of genes that originated from

multiple parental sources in coding and/or noncoding (regu-

latory site) sequences. Because of their unique origination,

chimeric genes are unlikely to retain their parental character-

istics and thus evolve novel functions. By surveying previous

new genes detected in other organisms, it can be concluded

that chimeric new genes account for a high percentage of

total new genes identified in a variety of organisms ranging

from mammals (Paulding et al. 2003; Sayah et al. 2004; Parker

et al. 2009), to flies (Long and Langley 1993; Jones et al. 2005;

Nozawa et al. 2005) and plants (Long et al. 1996; Wang et al.

2006; Fan et al. 2008). A recent investigation systematically

searched through new genes using the Drosophila genome

comparisons and found 30% of the new genes in the

D. melanogaster species complex recruited various genomic

sequences and formed chimeric gene structures. These find-

ings suggest structure innovation is important to the genera-

tion of new genes (Zhou et al. 2008). This is similar to what

was reported previously in the genomic analysis of O. sativa

ssp. indica (Wang et al. 2006). A previous study reported that

cultivated rice (O. sativa ssp. indica) genome encodes 898

functional retroposed genes, of which 380 were predicted

to have chimerical protein sequence structures (Wang et al.

2006). Because the most recent divergent time can better

record the recent evolutionary events, our observation pro-

vided additional solid evidence for the high rate of new

gene origination. Consistent with previous finding, we anno-

tated a total of 28 new genes on O. sativa ssp. japonica Chr3s,

14 (50%) of which appeared to be chimeric genes generated

by segmental duplication and DNA-level recombination. Our

current study revealed a high rate of chimeric gene origination

as: 14� 20¼280 chimeric genes/Myr/genome. The higher

rates of chimeric gene formation and the generation of a

large number of functional genes in rice again demonstrated

the broad diversification and adaptation of the grass species.

Both our previous and current studies all demonstrated that

rice genomes displayed an accelerated gene origination rate

and generated a high number of chimeric gene structures that

held potential to evolve novel functions (Wang et al. 2006;

Fan et al. 2008). However, these findings are in contrast to the

recently reported lower gene origination rate, which may

result from extremely conservative genome annotation

(Sakai et al. 2011). Conservative annotation is an approach

that has been widely used in functional genomics and molec-

ular functional analysis but may not fit the need for evolution-

ary genomic study. In practice, new evolutionary changes,

including new genes, are seriously underestimated by this

approach (Zhang et al. 2012).

Previous studies in Drosophila have demonstrated that re-

petitive elements could facilitate recombination to generate

high occurrences of chimeric genes (Yang et al. 2008). In rice,

the abundance of Pack-MULEs could capture fragment(s) of

genomic DNA sequence while also rearranging and fusing

with target sequence to generate a large amount of new

reading frame and chimerical transcripts (Jiang et al. 2004).

Therefore, mechanisms such as these could be responsible for

the chimeric gene formation in rice genome.

Table 2

Expression of New Genes in Oryza sativa

Locus RNA-Seq Data EST MPSS Small RNA

Os03g01008 + � � �

Os03g01014 + � � �

Os03g01020 + + + +

Os03g01490 + + + +

Os03g02130 � � � +

Os03g02340 + � � +

Os03g03050 + + � +

Os03g04760 + � � +

Os03g07090 � � � +

Os03g07270 + + � +

Os03g07690 + � � +

Os03g09130 � � � +

Os03g10840 + � � +

Os03g11860 � � + +

Os03g12480 � � � +

Os03g12580 � � � +

Os03g15060 + � � +

Os03g15110 + + � +

Os03g16320 + � � +

Os03g18650 � � � +

Os03g21310 + + + +

Os03g24630 � � � +

Os03g24980 � � � +

Os03g24990 � � � +

Os03g25950 + � � +

Os03g29140 + � � +

Os03g32526 + + � +

Os03g33920 � � � +

NOTE.— +, present; �, absent.
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Supplementary Material

Supplementary tables S1–S7 and figures S1–S4 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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