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Variation in Photosynthetic Characteristics of Exocarp of Carya cathayensis
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Abstract: [Objective ITo elucidate the effect of metaxenia on photosynthesis that promotes fruit enlargement in Carya

cathayensis the shape gas exchange chlorophyll content and chlorophyll fluorescence characteristics of C. cathayensis
fruits pollinated with two different pollens during the fruit growth stages were measured. [Method ] Two pollination
combinations ( C. cathayensis x C. cathayensis or C. cathayensis X C. illinoensis) were conducted in this study. The
dynamic changes in photosynthetic area dry mass photosynthetic rate chlorophyll content and chlorophyll fluorescence

were investigated during the fruit growth stages. [Result] 1) The hickory fruits pollinated with pecan pollens ( pp) were
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significant larger and greener than those pollinated with hickory pollens ( hp) . Compared with the hickory fruits pollinated
with hp the increasing rate of the surface area and dry mass per day per fruit was significant higher in hickory fruits
pollinated with pp at the early and late fruit growth stages ( from 50 to 73 d after pollination and from 103 to 120 d after
pollination) . The photosynthetic rate per area of exocarp in hickory fruits pollinated with pp was significantly higher than
that in fruits pollinated with hp during 50 to 85 days after pollination. Moreover a significant positive correlation was
found between the dry mass increment and photosynthesis rate increment expressed on per fruit per day of hickory fruits.
2) The chlorophyll content of exocarp in fruits pollinated with pp was significantly higher than that in fruits pollinated with
hp and there was a significant positive correlation between the chlorophyll content and photosynthetic rate of exocarp in
hickory fruits. 3) The Y ETR and g, in fruits pollinated with pp were significantly higher than those in fruits pollinated
with hp at PAR of 1 265 pmolem s ™'. The light intensity of the maximum ETR in exocarp of hickory fruits pollinated
with hp was significantly lower compared with that in fruits pollinated with pp during the fruit growth stages. The light
intensity of the maximum ETR in exocarp of hickory fruits pollinated with hp significantly decreased at the late fruit growth
stage ( from 103 to 120 d after pollination) decreased by about 50% . The ¥Y( NO) in exocarp of hickory fruits pollinated
with hp significantly increased from 103 to 120 d after pollination. Compared with pericarp of hickory fruits pollinated with
hp the exocarp of fruits pollinated with pp had higher Y( II) and lower Y( NO) . [Conclusion] At the early fruit growth
stage ( from 50 to 73 d after pollination) the faster increase in dry mass of the fruits pollinated with pp was due to the
higher photosynthetic surface area and photosynthetic rate; at the late fruit growth stage ( from 103 to 120 d after
pollination)  the faster increase in dry mass of the fruits pollinated with pp was due to the increased photosynthetic surface
area. At the late fruit growth stage ( from 103 to 120 d after pollination) the fruits pollinated with hp was more
susceptible to light damage. It is suggested that the higher dry mass of fruits pollinated with pp might to related to the
adaptability of highdight at the late growth stages.
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Fig.3  Changes in apparent photosynthetic rate in exocarp and their corresponding leaves of the hickory fruits
pollinated with two different pollens during the fruit growth stages
4 5 2

Fig.4 Relationship between average daily dry mass Fig.5 Changes in chlorophyll content in exocarp of

increment and average daily apparent photosynthesis hickory fruits pollinated with two different pollens

rate increment expressed on per fruit of hickory fruits during the fruit growth stages
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Tab.1 Changes of chlorophyll fluorescence parameters of exocarp of hickory fruit
pollinated with two different pollens during the fruit growth stages
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Fig.7 Rapid light curves of of hickory fruit pollinated with two different pollens during the fruit growth stages
A. 50 50 d after pollination; B. 103d 103 d after pollination; C. 120 120 d after pollination.
8 Y( II) .Y(NPQ) .Y( NO) ( PAR)

Fig.8 Estimated fraction of Y( II) Y(NPQ) and Y( NO) in exocarp of hickory fruits pollinated with two different pollens with increasing
photosynthetic active radiation ( PAR) during the fruit growth stages
Al: 50 ; BI: 103 ; CI: 120 ; A2: 50 ; B2:
103 ; C2: 120 . Al: pollinated with hickory pollen at 50 d after pollination; B1: pollinated
with hickory pollen at 103 d after pollination; C1: pollinated with hickory pollen at 120 d after pollination; A2: pollinated with pecan pollen at 50 d
after pollination; B2: pollinated with pecan pollen at 103 d after pollination; C2: pollinated with pecan pollen at 120 d after pollination.
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