浙江农林大学 标志性论文培育项目申报书

项	目	名	称	:	高等植物性别染色体演化模式研究			
项	目分	1 责	人	:	章成君			
联	系		人	:	章成君			
联	系	系 电		:	18214605637			
所	在	学	院	:	林生院			
申	请	时	间	:	2023 年 6月 18日			

填表日期: 2023 年 6 月 18 日

申请人	姓名	章成君	性别	男	出生年月	1982.10	
信息	学位	博士	职称	教授	研究 方向	基因组演化	
项目组成员	姓名	所在单	位	职称	现研究方向或从事专业		
	吴家胜	浙江农林大学		教授	群体遗传学		
	娄和强	浙江农林大学		教授	功能基因组		
	颜景畏	浙江农林大学		教授	功能基因组		
	喻卫武	浙江农林大学		教授	栽培学		
	孙学鹏	浙江农林大学		教授	生物信息学		
	董川	浙江农林大学		博士	基因组演化		
	龙漫远	芝加哥大学		教授	新基因起源		
	范传珠	韦恩大学		教授	表观基因组		
	叶倩男	中科院昆明植	物研究所	博士生	全基因组关联分析		
	吴珍珍	中科院昆明植	物研究所	博士生	生物信息学		
	胡彦婷	中科院昆明植	物研究所	博士后	新基因起源		
预计完成时间		2024年1	2 月	拟合作单位	芝加哥大学、中科院昆明 植物研究所、韦恩大学		

一、目标(100字之内)

解析香榧雄树基因组。以香榧为主要类比对象,完成番木瓜、小立碗藓、桫椤等不少于 100 种代表植物基因组、转录组分析,阐明裸子植物、被子植物、藓类植物、蕨类植物等高等植物繁殖体系与性别染色体(基因组)演化规律。

二、现有基础条件与可行性分析(1000字左右)

1. 合作团队基础

- (1)项目成员芝加哥大学杰出教授龙漫远,为项目申报人导师,是新基因起源研究领域的创始人,其关于新基因在性染色体演化、新基因具有关键重要功能(Essential function)的研究,多次发表于 CNS 主刊,取得了举世瞩目的影响。
- (2)本项目其他骨干成员,分别在基因组演化、生物信息学、功能基因组学等 领域有丰富的实践,具备快速完成大数据分析的能力,且均独立发表过子刊级别 的高影响力论文。

- (3)本项目团队成员,与番木瓜等性别染色体演化研究团队有紧密的合作,为 后期提升论文档次奠定了良好基础。
- 2. 基因组大数据与软硬件基础
- (1)团队已经解析了香榧雌树基因组,相关研究成果发表在知名学术期刊 Nature Communications 上,且已有相关转录组数据近 100 余套。
- (2) 团队已经完成 250 多份不同植物基因组、转录组的梳理和分析工作,相关论文发表在 Molecular Plant 上。
- (3) 团队已经开展了大量的生物信息学分析与实践,已经有不少常用的分析软件、流程,相关论文发表到了 PNAS、Genome Biology、MBE、NAR 等国际知名期刊,相关流程已经集成到 Docker 容器系统,为开展大数据分析奠定了软件基础。
- (4) 团队拥有生物信息学分析胖节点服务器多个,拥有存储容量约 150TB,为 开展生物信息学大数据分析奠定了较为充裕的硬件基础。
- (5)团队骨干成员对榧树分布与栽培情况了如指掌,为设计、开展对照实验提供了有益的材料基础。
- 3. 可行性分析
 - (1) 本项目科学问题具有 CNS 主刊论文高度

性别的演化,自达尔文《物种起源》起就广受学者关注,无论是动植物的繁殖、求偶的性选择、还是杂交与群体演变,都与性别的演化息息相关。性别表型的变化是浅层次的演变,其深层次机制在于分子层面、基因组层面的遗传信息的变化与调控。鉴于此,众多的学者开展了相关研究和梳理[1-3],尤其的,自 2011年知名学者 Ming Ray 教授开展番木瓜性染色体研究以来[4],植物基因组上性别染色体及关键功能基因的研究日益增多[5-8]。

(2) 本项目拟开展研究尚未有同类型研究

根据文献调研看,目前关于性别染色体演化的研究工作,主要还是聚焦于某一个具体的物种、或者某几个近缘物种的对比和分析上;尚未有大尺度、横跨大

量物种的性染色体演化方面的研究。本项目拟从藓类、蕨类植物出发(仅有雌雄细胞器),以香榧(存在雌雄异株)等裸子植物为承续,再对比被子植物的性别染色体,从而在大量物种基因组演化层级,进行大框架的研究;有望在数据级、问题的宏观跨度等角度获得突破,系统阐明性别染色体演变的框架和规律。

- 1. Charlesworth, Brian. "The evolution of sex chromosomes." Science 251.4997 (1991): 1030-1033.
- 2. Emerson, J. J., et al. "Extensive gene traffic on the mammalian X chromosome." Science 303.5657 (2004): 537-540.
- 3. Ge, Chutian, et al. "The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species." Science 360.6389 (2018): 645-648.
- 4. Ming, Ray, Abdelhafid Bendahmane, and Susanne S. Renner. "Sex chromosomes in land plants." Annual review of plant biology 62 (2011): 485-514.
- 5. Akagi, Takashi, et al. "A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons." Science 346.6209 (2014): 646-650.
- 6. Müller, Niels A., et al. "A single gene underlies the dynamic evolution of poplar sex determination." Nature plants 6.6 (2020): 630-637.
- 7. Akagi, Takashi, et al. "Recurrent neo-sex chromosome evolution in kiwifruit." Nature Plants 9.3 (2023): 393-402.

Healey, Adam L., et al. "Newly identified sex chromosomes in the Sphagnum (*peat moss*) genome alter carbon sequestration and ecosystem dynamics." Nature Plants 9.2 (2023): 238-254.

三、实施方案(1000 字左右)

(一) 研究方案

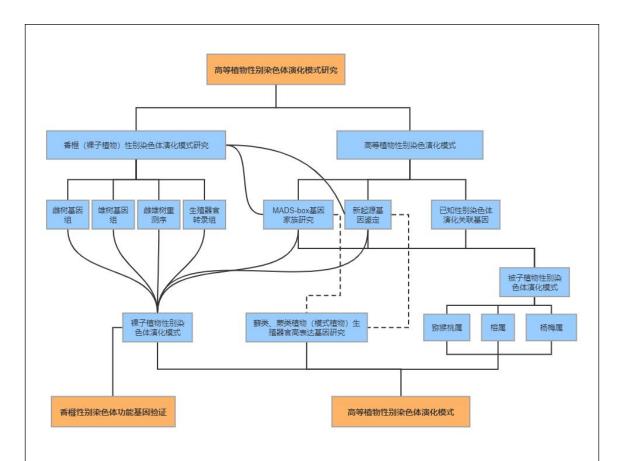
- 1. 完成香榧雄树基因组测序、组装与注释相关工作
 - ◆ 在已测序雌树附近,选取一株雄树完成基因组测序等工作;
 - ◆ 同步完成部分物种(注释质量较差的)的统一注释提升工作;
 - ◆ 根据高等植物系统发育树(基因组已收集的物种),完成雌雄异株(e.g. 香榧)、雌雄同株异花(e.g. 玉米)、雌雄同株同花等7种类型的广泛梳理,保留相关数据充裕的物种;
 - ◆ 优先考虑保留在同一科属内,其植物性别类型不同的物种(e.g. 榕属);

2. 香榧基因组性染色体鉴定

- ◆ 选取核心种质资源中的单株,完成30株雄树、30株雌树的重测序工作;
- ◆ 完成性别决定基因的 GWAS 分析工作(参考苏铁性别基因鉴定工作);
- ◆ 鉴别香榧性别决定染色体或片段;

3. 香榧基因组新基因鉴定及转录组注释

- ◆ 已有的研究表明,新基因(与近缘物种相比,新产生的基因)往往在雄性生殖 器官高表达,新基因的演化,与性别染色体演化存在密切关系;
- ◆ 对香榧雄树、雌树基因组开展单独的新基因鉴定工作,对比新基因的差异及其 产生的演化规律:
- ◆ 对鉴定得到的新基因进行转录组注释,为香榧性染色体/性别决定基因鉴定提供不同来源证据:


4. 高等植物 MADS-box 基因家族分析与梳理

- ◆ 已有研究表明,MADS-box 基因家族成员,与性别染色体演化存在一定的关联 关系(e.g. 苏铁、油松等裸子植物);
- ◆ 通过基因家族收缩扩张分析,鉴定到拟分析高等植物 MADS-box 基因家族成员, 根据生殖器官转录组数据,筛选一批高表达 MADS-box 基因组;
- ◆ 针对已有文献、转录组数据、新基因鉴定结果,筛选一批性别决定关键基因, 开展相关实验验证:表达定位、酵母双杂交、模式植物验证等;

5. 高等植物性别染色体演化规律汇总

- ◆ 根据香榧性别染色体的结果,汇总梳理裸子植物(油松、苏铁等)性别染色体 的演化规律(模式);
- ◆ 汇总梳理被子植物 2-3 个科属(猕猴桃属、榕属、杨梅属)的性别染色体演化 规律(模式)
- ◆ 对藓类、蕨类植物进行生殖器官转录组数据汇总与规律分析。
- ◆ 尝试汇总探讨高等植物中现存性别染色体演化规律。

6. 技术路线图

(二) 合作方案

- 1. 材料收集及栽培、生理实验、雄树基因组、重测序、转录组等,由香榧大团队协作 完成;
- 2. 新基因鉴定分析、基因组演化分析等,由中科院昆植所团队及董川老师等完成:
- 3. 鉴定得到的潜在候选基因异源功能验证,由香榧大团队协作完成;
- 4. 期间将以 1-2 个月为时间尺度,中科院、国外专家、浙农林团队进行项目交流汇报, 细化下一阶段工作;在论文成型阶段,将由浙农林团队执笔起草、国外专家共同商 量调整最终框架。
- 5. 浙农林为第一署名单位,浙农林成员为第一作者和最末通讯作者。

四、经费概算

- 1. 劳务费: 本项目工作量大、任务紧,需要紧急动员大量专家、学生共同完成本项目:
 - (1) 需要一批学生快速完成常规数据的收集、汇总和梳理,预计参

与项目人数包含硕士学生 6 名,博士生 3 名,博士后 1-2 名。 预计每月支出劳务费 1.5 万元,共计 27 万元。

- (2) 本项目联合多名校外专家团队,拟以项目专家咨询费、差旅费、论文绩效经费等形式支出,共计54万。
- 2. 测试化验费:
 - (1) 重测序费用: 20×30×12×15+20×5×48×15=18 万元
 - (2) 转录组测序费用: 18万元
 - (3) 异源植物功能验证实验: 28 万元

五、专家组评审意见

专家组长(签字):